Ensemble Deep Convolutional Neural Network to Identify Fractured Limbs using CT Scans

Anup Khanal, Rodrigue Rizk, K. Santosh
{"title":"Ensemble Deep Convolutional Neural Network to Identify Fractured Limbs using CT Scans","authors":"Anup Khanal, Rodrigue Rizk, K. Santosh","doi":"10.1109/CAI54212.2023.00075","DOIUrl":null,"url":null,"abstract":"Accurate classification between fractured and intact bones in Computed Tomography (CT) scan serves as a precursor to further treatment planning. CNN is no exception to handle this, and as an example AlexNet ranked top in the ImageNet challenge (2012). To overcome generalization errors, we propose to ensemble deep convolutional neural networks to check how well fractured limbs can be analyzed. It primarily includes voting (soft and hard), stacking, bagging, and feature soup on a backbone consisting of VGG19, ResNet152, Inception, MobileNet, and DenseNet169. On a clinically annotated dataset of size 5,567 CT scans, we achieved the highest accuracy of 0.977, precision of 0.959, recall of 0.960, F1-score of 0.960, and AUC of 0.971. To the best of our knowledge, this is the first time this dataset has been used to classify fractured and intact bones.","PeriodicalId":129324,"journal":{"name":"2023 IEEE Conference on Artificial Intelligence (CAI)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Conference on Artificial Intelligence (CAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAI54212.2023.00075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate classification between fractured and intact bones in Computed Tomography (CT) scan serves as a precursor to further treatment planning. CNN is no exception to handle this, and as an example AlexNet ranked top in the ImageNet challenge (2012). To overcome generalization errors, we propose to ensemble deep convolutional neural networks to check how well fractured limbs can be analyzed. It primarily includes voting (soft and hard), stacking, bagging, and feature soup on a backbone consisting of VGG19, ResNet152, Inception, MobileNet, and DenseNet169. On a clinically annotated dataset of size 5,567 CT scans, we achieved the highest accuracy of 0.977, precision of 0.959, recall of 0.960, F1-score of 0.960, and AUC of 0.971. To the best of our knowledge, this is the first time this dataset has been used to classify fractured and intact bones.
集成深度卷积神经网络识别肢体骨折的CT扫描
计算机断层扫描(CT)对骨折和完整骨的准确分类可作为进一步治疗计划的先驱。CNN在处理这个问题上也不例外,作为一个例子,AlexNet在ImageNet挑战(2012)中排名第一。为了克服泛化误差,我们建议集成深度卷积神经网络来检查骨折肢体的分析效果。它主要包括投票(软的和硬的)、堆叠、打包和功能汤在VGG19、ResNet152、Inception、MobileNet和DenseNet169组成的主干上。在5,567个CT扫描的临床注释数据集上,我们获得了最高的准确度0.977,精密度0.959,召回率0.960,f1评分0.960,AUC 0.971。据我们所知,这是第一次使用这个数据集对骨折和完整的骨头进行分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信