{"title":"Which rational double points occur on del Pezzo surfaces","authors":"Claudia Stadlmayr","doi":"10.46298/epiga.2021.7041","DOIUrl":null,"url":null,"abstract":"We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\\rm char}(k)=p \\geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.","PeriodicalId":278201,"journal":{"name":"arXiv: Algebraic Geometry","volume":"200 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Algebraic Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/epiga.2021.7041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We determine all configurations of rational double points that occur on RDP del Pezzo surfaces of arbitrary degree and Picard rank over an algebraically closed field $k$ of arbitrary characteristic ${\rm char}(k)=p \geq 0$, generalizing classical work of Du Val to positive characteristic. Moreover, we give simplified equations for all RDP del Pezzo surfaces of degree $1$ containing non-taut rational double points.