An underwater bearing-only multi-target tracking approach based on enhanced Kalman filter

Yuning Qian, Yawei Chen, Xinrong Cao, Jiutao Wu, Jun Sun
{"title":"An underwater bearing-only multi-target tracking approach based on enhanced Kalman filter","authors":"Yuning Qian, Yawei Chen, Xinrong Cao, Jiutao Wu, Jun Sun","doi":"10.1109/ICEICT.2016.7879684","DOIUrl":null,"url":null,"abstract":"This paper presents an enhanced Kalman filter, including the multi-track gate method and the autoregression (AR) model, for underwater bearing-only multi-target tracking. The single-double side constant false alarm rate (SD-CFAR) method is firstly proposed for crossing target detection, and multi-track gate method and autoregression (AR) model is then used to enhance the traditional Kalman filter to complete automatic track initialization, crossing trace tracking and track interruption prediction. The results of simulation study verify the effectiveness of the presented approach for bearing-only multi-target tracking and indicate that this approach is more beneficial than traditional CFAR and Kalman filter.","PeriodicalId":224387,"journal":{"name":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT.2016.7879684","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This paper presents an enhanced Kalman filter, including the multi-track gate method and the autoregression (AR) model, for underwater bearing-only multi-target tracking. The single-double side constant false alarm rate (SD-CFAR) method is firstly proposed for crossing target detection, and multi-track gate method and autoregression (AR) model is then used to enhance the traditional Kalman filter to complete automatic track initialization, crossing trace tracking and track interruption prediction. The results of simulation study verify the effectiveness of the presented approach for bearing-only multi-target tracking and indicate that this approach is more beneficial than traditional CFAR and Kalman filter.
一种基于增强卡尔曼滤波的水下全方位多目标跟踪方法
本文提出了一种改进的卡尔曼滤波器,包括多航迹门方法和自回归模型,用于水下纯方位多目标跟踪。首先提出单双侧恒虚警率(SD-CFAR)方法进行交叉目标检测,然后利用多航迹门法和自回归(AR)模型对传统卡尔曼滤波进行增强,完成自动航迹初始化、交叉航迹跟踪和航迹中断预测。仿真研究结果验证了该方法在纯方位多目标跟踪中的有效性,并表明该方法比传统的CFAR和卡尔曼滤波更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信