tBART: Abstractive summarization based on the joining of Topic modeling and BART

Binh Dang, Dinh-Truong Do, Le-Minh Nguyen
{"title":"tBART: Abstractive summarization based on the joining of Topic modeling and BART","authors":"Binh Dang, Dinh-Truong Do, Le-Minh Nguyen","doi":"10.1109/KSE56063.2022.9953613","DOIUrl":null,"url":null,"abstract":"Topic information has been helpful to direct semantics in text summarization. In this paper, we present a study on a novel and efficient method to incorporate the topic information with the BART model for abstractive summarization, called the tBART. The proposed model inherits the advantages of the BART, learns latent topics, and transfers the topic vector of tokens to context space by an align function. The experimental results illustrate the effectiveness of our proposed method, which significantly outperforms previous methods on two benchmark datasets: XSUM and CNN/DAILY MAIL.","PeriodicalId":330865,"journal":{"name":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Knowledge and Systems Engineering (KSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KSE56063.2022.9953613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Topic information has been helpful to direct semantics in text summarization. In this paper, we present a study on a novel and efficient method to incorporate the topic information with the BART model for abstractive summarization, called the tBART. The proposed model inherits the advantages of the BART, learns latent topics, and transfers the topic vector of tokens to context space by an align function. The experimental results illustrate the effectiveness of our proposed method, which significantly outperforms previous methods on two benchmark datasets: XSUM and CNN/DAILY MAIL.
tBART:基于主题建模和BART结合的抽象摘要
在文本摘要中,主题信息有助于指导语义。在本文中,我们研究了一种新颖而有效的方法,将主题信息与BART模型结合起来进行抽象摘要,称为tBART。该模型继承了BART的优点,学习潜在主题,并通过对齐函数将标记的主题向量转移到上下文空间。实验结果表明了本文方法的有效性,在XSUM和CNN/DAILY MAIL两个基准数据集上显著优于之前的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信