A network of globally coupled chaotic maps for adaptive multi-resolution image segmentation

Liang Zhao, R. A. Furukawa, A. Carvalho
{"title":"A network of globally coupled chaotic maps for adaptive multi-resolution image segmentation","authors":"Liang Zhao, R. A. Furukawa, A. Carvalho","doi":"10.1109/SBRN.2002.1181441","DOIUrl":null,"url":null,"abstract":"In this paper, a computational model for image segmentation based on a network of coupled chaotic maps is proposed. Time evolutions of chaotic maps that correspond to a pixel class are synchronized with one another, while this synchronized evolution is desynchronized with respect to time evolution of chaotic maps corresponding to other pixel classes in the same data set. The model presents the following advantages in comparison to conventional pixel classification techniques: 1) the segmentation process is intrinsically parallel; 2) the number of pixel classes can be previous unknown; 3) the model offers a multi-resolution and multi-thresholding segmentation approach; 4) the adaptive pixel moving process makes the model robust to classify ambiguous pixels; and 5) the model obtains good performance and transparent dynamics by utilizing one-dimensional chaotic maps instead of complex neurons as individual elements.","PeriodicalId":157186,"journal":{"name":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"VII Brazilian Symposium on Neural Networks, 2002. SBRN 2002. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBRN.2002.1181441","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this paper, a computational model for image segmentation based on a network of coupled chaotic maps is proposed. Time evolutions of chaotic maps that correspond to a pixel class are synchronized with one another, while this synchronized evolution is desynchronized with respect to time evolution of chaotic maps corresponding to other pixel classes in the same data set. The model presents the following advantages in comparison to conventional pixel classification techniques: 1) the segmentation process is intrinsically parallel; 2) the number of pixel classes can be previous unknown; 3) the model offers a multi-resolution and multi-thresholding segmentation approach; 4) the adaptive pixel moving process makes the model robust to classify ambiguous pixels; and 5) the model obtains good performance and transparent dynamics by utilizing one-dimensional chaotic maps instead of complex neurons as individual elements.
一种用于自适应多分辨率图像分割的全局耦合混沌映射网络
本文提出了一种基于耦合混沌映射网络的图像分割计算模型。对应于一个像素类的混沌图的时间演化是相互同步的,而这种同步演化与同一数据集中对应于其他像素类的混沌图的时间演化是不同步的。与传统的像素分类技术相比,该模型具有以下优点:1)分割过程本质上是并行的;2)像素类的数量可以是先前未知的;3)该模型提供了一种多分辨率和多阈值分割方法;4)自适应像素移动过程使模型对模糊像素具有鲁棒性;5)利用一维混沌映射代替复杂神经元作为单个元素,获得了良好的性能和透明的动态。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信