Active Curriculum Learning

B. Jafarpour, Dawn Sepehr, Nick Pogrebnyakov
{"title":"Active Curriculum Learning","authors":"B. Jafarpour, Dawn Sepehr, Nick Pogrebnyakov","doi":"10.18653/v1/2021.internlp-1.6","DOIUrl":null,"url":null,"abstract":"This paper investigates and reveals the relationship between two closely related machine learning disciplines, namely Active Learning (AL) and Curriculum Learning (CL), from the lens of several novel curricula. This paper also introduces Active Curriculum Learning (ACL) which improves AL by combining AL with CL to benefit from the dynamic nature of the AL informativeness concept as well as the human insights used in the design of the curriculum heuristics. Comparison of the performance of ACL and AL on two public datasets for the Named Entity Recognition (NER) task shows the effectiveness of combining AL and CL using our proposed framework.","PeriodicalId":262697,"journal":{"name":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Interactive Learning for Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2021.internlp-1.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

This paper investigates and reveals the relationship between two closely related machine learning disciplines, namely Active Learning (AL) and Curriculum Learning (CL), from the lens of several novel curricula. This paper also introduces Active Curriculum Learning (ACL) which improves AL by combining AL with CL to benefit from the dynamic nature of the AL informativeness concept as well as the human insights used in the design of the curriculum heuristics. Comparison of the performance of ACL and AL on two public datasets for the Named Entity Recognition (NER) task shows the effectiveness of combining AL and CL using our proposed framework.
主动课程学习
本文从几个新课程的角度,研究并揭示了两个密切相关的机器学习学科,即主动学习(AL)和课程学习(CL)之间的关系。本文还介绍了主动课程学习(ACL),它通过将人工智能与人工智能相结合来改进人工智能,从而受益于人工智能信息概念的动态特性以及课程启发式设计中使用的人类见解。在命名实体识别(NER)任务的两个公共数据集上,ACL和ai的性能比较显示了使用我们提出的框架将ai和CL结合起来的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信