{"title":"Automatic Document Logo Detection","authors":"Guangyu Zhu, D. Doermann","doi":"10.1109/ICDAR.2007.68","DOIUrl":null,"url":null,"abstract":"Automatic logo detection and recognition continues to be of great interest to the document retrieval community as it enables effective identification of the source of a document. In this paper, we propose a new approach to logo detection and extraction in document images that robustly classifies and precisely localizes logos using a boosting strategy across multiple image scales. At a coarse scale, a trained Fisher classifier performs initial classification using features from document context and connected components. Each logo candidate region is further classified at successively finer scales by a cascade of simple classifiers, which allows false alarms to be discarded and the detected region to be refined. Our approach is segmentation free and lay-out independent. We define a meaningful evaluation metric to measure the quality of logo detection using labeled groundtruth. We demonstrate the effectiveness of our approach using a large collection of real-world documents.","PeriodicalId":279268,"journal":{"name":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"120","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ninth International Conference on Document Analysis and Recognition (ICDAR 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2007.68","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 120
Abstract
Automatic logo detection and recognition continues to be of great interest to the document retrieval community as it enables effective identification of the source of a document. In this paper, we propose a new approach to logo detection and extraction in document images that robustly classifies and precisely localizes logos using a boosting strategy across multiple image scales. At a coarse scale, a trained Fisher classifier performs initial classification using features from document context and connected components. Each logo candidate region is further classified at successively finer scales by a cascade of simple classifiers, which allows false alarms to be discarded and the detected region to be refined. Our approach is segmentation free and lay-out independent. We define a meaningful evaluation metric to measure the quality of logo detection using labeled groundtruth. We demonstrate the effectiveness of our approach using a large collection of real-world documents.