Navid Asmari, Mustafa Kangül, Santiago H. Andany, A. Karimi, G. Fantner
{"title":"Data-Driven Feedforward Hysteresis Compensation with Genetic Algorithm for Atomic Force Microscope*","authors":"Navid Asmari, Mustafa Kangül, Santiago H. Andany, A. Karimi, G. Fantner","doi":"10.1109/MARSS55884.2022.9870479","DOIUrl":null,"url":null,"abstract":"Nonlinear dynamics of piezo actuators such as hysteresis, distort the Atomic Force Microscopy (AFM) images as they adversely affect the accuracy of the nano-positioning setup. To compensate for the effects of hysteresis on lateral scanner actuators of AFM, a data-driven feedforward controller design algorithm is proposed. The pair of forward and backward images of a sample are used to extract a mapping between the trace and retrace motion of the actuator. A model corresponding to the input-output mapping of the actuator is defined with a set of unknown parameters. The values of these parameters, which shape the hysteresis curves of the actuator, are optimized through defining and solving an optimization problem. A genetic algorithm is utilized as a tool to look for the optimal values. The hysteresis mapping model is then implemented in the form of an inversion-based feedforward controller to correct the scan waveforms and get matching forward and backward images of the sample. The proposed sensor-less data-driven method is easy to implement as it does not depend on the instrument, the sample under study, or the imaging properties.","PeriodicalId":144730,"journal":{"name":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","volume":"12 6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Conference on Manipulation, Automation and Robotics at Small Scales (MARSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MARSS55884.2022.9870479","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Nonlinear dynamics of piezo actuators such as hysteresis, distort the Atomic Force Microscopy (AFM) images as they adversely affect the accuracy of the nano-positioning setup. To compensate for the effects of hysteresis on lateral scanner actuators of AFM, a data-driven feedforward controller design algorithm is proposed. The pair of forward and backward images of a sample are used to extract a mapping between the trace and retrace motion of the actuator. A model corresponding to the input-output mapping of the actuator is defined with a set of unknown parameters. The values of these parameters, which shape the hysteresis curves of the actuator, are optimized through defining and solving an optimization problem. A genetic algorithm is utilized as a tool to look for the optimal values. The hysteresis mapping model is then implemented in the form of an inversion-based feedforward controller to correct the scan waveforms and get matching forward and backward images of the sample. The proposed sensor-less data-driven method is easy to implement as it does not depend on the instrument, the sample under study, or the imaging properties.