Lesion Attributes Segmentation for Melanoma Detection with Multi-Task U-Net

Eric Z. Chen, Xu Dong, Xiaoxiao Li, Hongda Jiang, Ruichen Rong, Junyan Wu
{"title":"Lesion Attributes Segmentation for Melanoma Detection with Multi-Task U-Net","authors":"Eric Z. Chen, Xu Dong, Xiaoxiao Li, Hongda Jiang, Ruichen Rong, Junyan Wu","doi":"10.1109/ISBI.2019.8759483","DOIUrl":null,"url":null,"abstract":"Melanoma is the most deadly form of skin cancer worldwide. Many efforts have been made for early detection of melanoma with deep learning based on dermoscopic images. It is crucial to identify the specific lesion patterns for accurate diagnosis of melanoma. However, the common lesion patterns are not consistently present and cause sparse label problems in the data. In this paper, we propose a multi-task U-Net model to automatically detect lesion attributes of melanoma. The network includes two tasks, one is the classification task to classify if the lesion attributes present, and the other is the segmentation task to segment the attributes in the images. Our multi-task U-Net model achieves a Jaccard index of 0.433 on official test data of ISIC 2018 Challenges task 2, which ranks the 5th place on the final leaderboard.","PeriodicalId":119935,"journal":{"name":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","volume":"215 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2019.8759483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Melanoma is the most deadly form of skin cancer worldwide. Many efforts have been made for early detection of melanoma with deep learning based on dermoscopic images. It is crucial to identify the specific lesion patterns for accurate diagnosis of melanoma. However, the common lesion patterns are not consistently present and cause sparse label problems in the data. In this paper, we propose a multi-task U-Net model to automatically detect lesion attributes of melanoma. The network includes two tasks, one is the classification task to classify if the lesion attributes present, and the other is the segmentation task to segment the attributes in the images. Our multi-task U-Net model achieves a Jaccard index of 0.433 on official test data of ISIC 2018 Challenges task 2, which ranks the 5th place on the final leaderboard.
基于多任务U-Net的黑色素瘤检测病灶属性分割
黑色素瘤是世界上最致命的皮肤癌。基于皮肤镜图像的深度学习在黑色素瘤的早期检测方面已经做出了许多努力。对于黑色素瘤的准确诊断,确定特定的病变模式是至关重要的。然而,常见的病变模式并不一致,并导致数据中的稀疏标签问题。在本文中,我们提出了一个多任务U-Net模型来自动检测黑色素瘤的病变属性。该网络包括两个任务,一个是分类任务,对是否存在病变属性进行分类,另一个是分割任务,对图像中的属性进行分割。我们的多任务U-Net模型在ISIC 2018 Challenges task 2官方测试数据上取得了0.433的Jaccard指数,在最终排行榜上排名第5。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信