Static output feedback control for LPV systems under affine uncertainty structure

N. Aouani, S. Salhi, G. García, M. Ksouri
{"title":"Static output feedback control for LPV systems under affine uncertainty structure","authors":"N. Aouani, S. Salhi, G. García, M. Ksouri","doi":"10.1109/ICOSC.2013.6750960","DOIUrl":null,"url":null,"abstract":"This paper addresses the static output feedback (SOF) control design problem of Linear Parameter Varying (LPV) affine systems. We aim all along the work to establish robust stability and stabilizability conditions, formulated in terms of Linear Matrix Inequalities (LMIs). The conditions are parameterized by a real α that allows to bring to feasibility some unfeasible problems. Also the separation between the Lyapunov matrix and the state matrix are done by use of some useful lemmas. This reduces the conservatism engendered and achieves the relaxation of the problem by the addition of slack variables. We prove by numerical examples the contribution of the newly proposed approach for both the analysis and the synthesis of the LPV system.","PeriodicalId":199135,"journal":{"name":"3rd International Conference on Systems and Control","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3rd International Conference on Systems and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSC.2013.6750960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

This paper addresses the static output feedback (SOF) control design problem of Linear Parameter Varying (LPV) affine systems. We aim all along the work to establish robust stability and stabilizability conditions, formulated in terms of Linear Matrix Inequalities (LMIs). The conditions are parameterized by a real α that allows to bring to feasibility some unfeasible problems. Also the separation between the Lyapunov matrix and the state matrix are done by use of some useful lemmas. This reduces the conservatism engendered and achieves the relaxation of the problem by the addition of slack variables. We prove by numerical examples the contribution of the newly proposed approach for both the analysis and the synthesis of the LPV system.
仿射不确定结构下LPV系统的静态输出反馈控制
研究了线性变参数仿射系统的静态输出反馈控制设计问题。我们的目标一直是建立鲁棒稳定性和稳定性条件,用线性矩阵不等式(lmi)表示。这些条件用一个实的α参数化,使得一些不可行的问题变得可行。利用一些有用的引理将李雅普诺夫矩阵与状态矩阵分离。这减少了产生的保守性,并通过加入松弛变量实现了问题的松弛。通过数值算例证明了该方法对LPV系统的分析和综合的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信