{"title":"Sclability of Massively Parallel Depth-First Search","authors":"A. Reinefeld","doi":"10.1090/dimacs/022/13","DOIUrl":null,"url":null,"abstract":"We analyze and compare the scalability of two generic schemes for heuristic depthrst search on highly parallel MIMD systems. The rst one employs a task attraction mechanism where the work packets are generated on demand by splitting the donor's stack. Analytical and empirical analyses show that this stack-splitting scheme works e ciently on parallel systems with a small communication diameter and a moderate number of processing elements. The second scheme, search-frontier splitting, also employs a task attraction mechanism, but uses pre-computed work packets taken from a search-frontier level of the tree. At the beginning, a search-frontier is generated and stored in the local memories. Then, the processors expand the subtrees of their frontier nodes, communicating only when they run out of work or a solution has been found. Empirical results obtained on a 32 32 = 1024 node MIMD system indicate that the search-frontier splitting scheme incurs fewer overheadsand scales better than stack-splitting on large message-passing systems. Best results were obtained with an iterative-deepening variant that improves the work-load balance from one iteration to the next.","PeriodicalId":336054,"journal":{"name":"Parallel Processing of Discrete Optimization Problems","volume":"275 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parallel Processing of Discrete Optimization Problems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/dimacs/022/13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
We analyze and compare the scalability of two generic schemes for heuristic depthrst search on highly parallel MIMD systems. The rst one employs a task attraction mechanism where the work packets are generated on demand by splitting the donor's stack. Analytical and empirical analyses show that this stack-splitting scheme works e ciently on parallel systems with a small communication diameter and a moderate number of processing elements. The second scheme, search-frontier splitting, also employs a task attraction mechanism, but uses pre-computed work packets taken from a search-frontier level of the tree. At the beginning, a search-frontier is generated and stored in the local memories. Then, the processors expand the subtrees of their frontier nodes, communicating only when they run out of work or a solution has been found. Empirical results obtained on a 32 32 = 1024 node MIMD system indicate that the search-frontier splitting scheme incurs fewer overheadsand scales better than stack-splitting on large message-passing systems. Best results were obtained with an iterative-deepening variant that improves the work-load balance from one iteration to the next.