Embedding Heterogeneous Information Network in Hyperbolic Spaces

Yiding Zhang, Xiao Wang, Nian Liu, C. Shi
{"title":"Embedding Heterogeneous Information Network in Hyperbolic Spaces","authors":"Yiding Zhang, Xiao Wang, Nian Liu, C. Shi","doi":"10.1145/3468674","DOIUrl":null,"url":null,"abstract":"Heterogeneous information network (HIN) embedding, aiming to project HIN into a low-dimensional space, has attracted considerable research attention. Most of the existing HIN embedding methods focus on preserving the inherent network structure and semantic correlations in Euclidean spaces. However, one fundamental problem is whether the Euclidean spaces are the intrinsic spaces of HIN? Recent researches find the complex network with hyperbolic geometry can naturally reflect some properties, e.g., hierarchical and power-law structure. In this article, we make an effort toward embedding HIN in hyperbolic spaces. We analyze the structures of three HINs and discover some properties, e.g., the power-law distribution, also exist in HINs. Therefore, we propose a novel HIN embedding model HHNE. Specifically, to capture the structure and semantic relations between nodes, HHNE employs the meta-path guided random walk to sample the sequences for each node. Then HHNE exploits the hyperbolic distance as the proximity measurement. We also derive an effective optimization strategy to update the hyperbolic embeddings iteratively. Since HHNE optimizes different relations in a single space, we further propose the extended model HHNE++. HHNE++ models different relations in different spaces, which enables it to learn complex interactions in HINs. The optimization strategy of HHNE++ is also derived to update the parameters of HHNE++ in a principle manner. The experimental results demonstrate the effectiveness of our proposed models.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468674","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Heterogeneous information network (HIN) embedding, aiming to project HIN into a low-dimensional space, has attracted considerable research attention. Most of the existing HIN embedding methods focus on preserving the inherent network structure and semantic correlations in Euclidean spaces. However, one fundamental problem is whether the Euclidean spaces are the intrinsic spaces of HIN? Recent researches find the complex network with hyperbolic geometry can naturally reflect some properties, e.g., hierarchical and power-law structure. In this article, we make an effort toward embedding HIN in hyperbolic spaces. We analyze the structures of three HINs and discover some properties, e.g., the power-law distribution, also exist in HINs. Therefore, we propose a novel HIN embedding model HHNE. Specifically, to capture the structure and semantic relations between nodes, HHNE employs the meta-path guided random walk to sample the sequences for each node. Then HHNE exploits the hyperbolic distance as the proximity measurement. We also derive an effective optimization strategy to update the hyperbolic embeddings iteratively. Since HHNE optimizes different relations in a single space, we further propose the extended model HHNE++. HHNE++ models different relations in different spaces, which enables it to learn complex interactions in HINs. The optimization strategy of HHNE++ is also derived to update the parameters of HHNE++ in a principle manner. The experimental results demonstrate the effectiveness of our proposed models.
在双曲空间中嵌入异构信息网络
异构信息网络嵌入是将异构信息网络投射到低维空间的一种研究方法。现有的HIN嵌入方法大多侧重于保留欧几里德空间中固有的网络结构和语义相关性。然而,一个基本的问题是欧几里德空间是否是HIN的本征空间?近年来的研究发现,具有双曲几何结构的复杂网络可以很自然地反映出一些特性,如层次结构和幂律结构。在本文中,我们尝试在双曲空间中嵌入HIN。我们分析了三种HINs的结构,发现HINs也存在幂律分布等性质。为此,我们提出了一种新的HIN嵌入模型HHNE。具体来说,为了捕获节点之间的结构和语义关系,HHNE采用元路径引导随机漫步对每个节点的序列进行采样。然后利用双曲距离作为接近度量。我们还推导了一种有效的迭代更新双曲嵌入的优化策略。由于HHNE对单个空间中的不同关系进行了优化,我们进一步提出了扩展模型HHNE++。HHNE++在不同的空间中建模不同的关系,使其能够学习HINs中复杂的交互。推导了HHNE++的优化策略,对HHNE++的参数进行了原则性的更新。实验结果证明了所提模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信