Signal Detection Theory-Based Localization Method in Urban NLOS Environment

Yibo Li, Junhui Zhao, Hongxue Diao, Lihua Yang
{"title":"Signal Detection Theory-Based Localization Method in Urban NLOS Environment","authors":"Yibo Li, Junhui Zhao, Hongxue Diao, Lihua Yang","doi":"10.1109/iccc52777.2021.9580249","DOIUrl":null,"url":null,"abstract":"Location based service (LBS) plays an important role in smart city system. However, there is serious non-line of sight (NLOS) phenomenon in high-density urban areas, which affects the localization accuracy significantly. Based on signal detection theory, we propose a two-step localization method to identify NLOS signals and estimate position after mitigating the influence of NLOS. Firstly, depending on the prior probabilities, the NLOS signals are identified by generalized likelihood ratio (GLR) test or Neyman-Pearson (NP) criterion. Moreover, the NLOS signals are mitigated based on identified measurement condition. Finally, selecting residual weighting algorithm (S-RWGH) is used to estimate the target position. Simulation results show that the proposed algorithm can effectively improve the localization accuracy. Average location error is below 15 m when the NLOS rate is below 62.5 % in the urban environment.","PeriodicalId":425118,"journal":{"name":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/CIC International Conference on Communications in China (ICCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccc52777.2021.9580249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Location based service (LBS) plays an important role in smart city system. However, there is serious non-line of sight (NLOS) phenomenon in high-density urban areas, which affects the localization accuracy significantly. Based on signal detection theory, we propose a two-step localization method to identify NLOS signals and estimate position after mitigating the influence of NLOS. Firstly, depending on the prior probabilities, the NLOS signals are identified by generalized likelihood ratio (GLR) test or Neyman-Pearson (NP) criterion. Moreover, the NLOS signals are mitigated based on identified measurement condition. Finally, selecting residual weighting algorithm (S-RWGH) is used to estimate the target position. Simulation results show that the proposed algorithm can effectively improve the localization accuracy. Average location error is below 15 m when the NLOS rate is below 62.5 % in the urban environment.
基于信号检测理论的城市NLOS环境定位方法
基于位置的服务(LBS)在智慧城市系统中扮演着重要的角色。然而,高密度城市地区存在严重的非视线现象,严重影响了定位精度。在信号检测理论的基础上,提出了一种两步定位的方法来识别非视点信号并在减轻非视点影响后估计其位置。首先,根据先验概率,采用广义似然比(GLR)检验或Neyman-Pearson (NP)准则对NLOS信号进行识别;此外,根据确定的测量条件,对NLOS信号进行了抑制。最后,采用选取残差加权算法(S-RWGH)估计目标位置。仿真结果表明,该算法能有效提高定位精度。在城市环境中,当NLOS率低于62.5%时,平均定位误差小于15 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信