FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for Task-Oriented Dialogue

Weihao Zeng, Keqing He, Yejie Wang, Chen Zeng, Jingang Wang, Yunsen Xian, Weiran Xu
{"title":"FutureTOD: Teaching Future Knowledge to Pre-trained Language Model for Task-Oriented Dialogue","authors":"Weihao Zeng, Keqing He, Yejie Wang, Chen Zeng, Jingang Wang, Yunsen Xian, Weiran Xu","doi":"10.48550/arXiv.2306.10315","DOIUrl":null,"url":null,"abstract":"Pre-trained language models based on general text enable huge success in the NLP scenario. But the intrinsical difference of linguistic patterns between general text and task-oriented dialogues makes existing pre-trained language models less useful in practice. Current dialogue pre-training methods rely on a contrastive framework and face the challenges of both selecting true positives and hard negatives. In this paper, we propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context using a self-training framework. Our intuition is that a good dialogue representation both learns local context information and predicts future information. Extensive experiments on diverse downstream dialogue tasks demonstrate the effectiveness of our model, especially the generalization, robustness, and learning discriminative dialogue representations capabilities.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"134 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2306.10315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Pre-trained language models based on general text enable huge success in the NLP scenario. But the intrinsical difference of linguistic patterns between general text and task-oriented dialogues makes existing pre-trained language models less useful in practice. Current dialogue pre-training methods rely on a contrastive framework and face the challenges of both selecting true positives and hard negatives. In this paper, we propose a novel dialogue pre-training model, FutureTOD, which distills future knowledge to the representation of the previous dialogue context using a self-training framework. Our intuition is that a good dialogue representation both learns local context information and predicts future information. Extensive experiments on diverse downstream dialogue tasks demonstrate the effectiveness of our model, especially the generalization, robustness, and learning discriminative dialogue representations capabilities.
FutureTOD:将未来知识传授给任务导向对话的预训练语言模型
基于一般文本的预训练语言模型在NLP场景中取得了巨大的成功。但是,一般文本和任务导向对话之间语言模式的内在差异使得现有的预训练语言模型在实践中用处不大。当前的对话预训练方法依赖于一个对比框架,面临着选择真正的积极因素和硬消极因素的挑战。在本文中,我们提出了一种新的对话预训练模型FutureTOD,该模型使用自训练框架将未来知识提炼为先前对话上下文的表示。我们的直觉是,一个好的对话表示既能学习本地上下文信息,又能预测未来信息。在不同下游对话任务上的大量实验证明了我们的模型的有效性,特别是泛化、鲁棒性和学习判别对话表示能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信