Genetic & Evolutionary Biometrics: Feature extraction from a Machine Learning perspective

Joseph Shelton, Aniesha Alford, Lasanio Small, Derrick Leflore, Jared Williams, Joshua Adams, Gerry V. Dozier, Kelvin S. Bryant, Tamirat T. Abegaz, K. Ricanek
{"title":"Genetic & Evolutionary Biometrics: Feature extraction from a Machine Learning perspective","authors":"Joseph Shelton, Aniesha Alford, Lasanio Small, Derrick Leflore, Jared Williams, Joshua Adams, Gerry V. Dozier, Kelvin S. Bryant, Tamirat T. Abegaz, K. Ricanek","doi":"10.1109/SECON.2012.6197069","DOIUrl":null,"url":null,"abstract":"Genetic & Evolutionary Biometrics (GEB) is a newly emerging area of study devoted to the design, analysis, and application of genetic and evolutionary computing to the field of biometrics. In this paper, we present a GEB application called GEFEML (Genetic and Evolutionary Feature Extraction - Machine Learning). GEFEML incorporates a machine learning technique, referred to as cross validation, in an effort to evolve a population of local binary pattern feature extractors (FEs) that generalize well to unseen subjects. GEFEML was trained on a dataset taken from the FRGC database and generalized well on two test sets of unseen subjects taken from the FRGC and MORPH databases. GEFEML evolved FEs that used fewer patches, had comparable accuracy, and were 54% less expensive in terms of computational complexity.","PeriodicalId":187091,"journal":{"name":"2012 Proceedings of IEEE Southeastcon","volume":"85 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Proceedings of IEEE Southeastcon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SECON.2012.6197069","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Genetic & Evolutionary Biometrics (GEB) is a newly emerging area of study devoted to the design, analysis, and application of genetic and evolutionary computing to the field of biometrics. In this paper, we present a GEB application called GEFEML (Genetic and Evolutionary Feature Extraction - Machine Learning). GEFEML incorporates a machine learning technique, referred to as cross validation, in an effort to evolve a population of local binary pattern feature extractors (FEs) that generalize well to unseen subjects. GEFEML was trained on a dataset taken from the FRGC database and generalized well on two test sets of unseen subjects taken from the FRGC and MORPH databases. GEFEML evolved FEs that used fewer patches, had comparable accuracy, and were 54% less expensive in terms of computational complexity.
遗传与进化生物识别:从机器学习的角度提取特征
遗传与进化生物计量学(GEB)是一个新兴的研究领域,致力于设计、分析和应用遗传和进化计算到生物计量学领域。在本文中,我们提出了一个名为GEFEML(遗传和进化特征提取-机器学习)的GEB应用程序。GEFEML结合了一种被称为交叉验证的机器学习技术,努力进化出一组局部二元模式特征提取器(FEs),这些提取器可以很好地泛化到看不见的对象。GEFEML在取自FRGC数据库的数据集上进行训练,并在取自FRGC和MORPH数据库的未见受试者的两个测试集上进行了很好的泛化。GEFEML进化的FEs使用更少的补丁,具有相当的准确性,并且在计算复杂性方面降低了54%的成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信