Application of Machine Learning for Oilfield Data Quality Improvement

A. Andrianova, M. Simonov, D. Perets, A. Margarit, D. Serebryakova, Yu. M. Bogdanov, S. Budennyy, N. Volkov, A. Tsanda, A. Bukharev
{"title":"Application of Machine Learning for Oilfield Data Quality Improvement","authors":"A. Andrianova, M. Simonov, D. Perets, A. Margarit, D. Serebryakova, Yu. M. Bogdanov, S. Budennyy, N. Volkov, A. Tsanda, A. Bukharev","doi":"10.2118/191601-18RPTC-MS","DOIUrl":null,"url":null,"abstract":"\n The paper describes the principal possibility of using machine learning methods for verifying and restoring the quality of oilfield measurements. Basic methods for screening incorrect values have been given and approaches for solving three problems have been recommended:\n Correctness analysis of well logging data Quality control of physical and chemical fluid properties (PVT-studies) Separation between the base production and effect from well interventions (WI) to predict the performance of hydraulic fracturing (frac).\n The main deliverable is a set of algorithms based on machine learning methods, which allows to automatically process large volumes of field data. A number of approaches is proposed, including using modern methods of machine learning, to restore the missing values and the quality of algorithms operation.","PeriodicalId":242965,"journal":{"name":"Day 2 Tue, October 16, 2018","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, October 16, 2018","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/191601-18RPTC-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The paper describes the principal possibility of using machine learning methods for verifying and restoring the quality of oilfield measurements. Basic methods for screening incorrect values have been given and approaches for solving three problems have been recommended: Correctness analysis of well logging data Quality control of physical and chemical fluid properties (PVT-studies) Separation between the base production and effect from well interventions (WI) to predict the performance of hydraulic fracturing (frac). The main deliverable is a set of algorithms based on machine learning methods, which allows to automatically process large volumes of field data. A number of approaches is proposed, including using modern methods of machine learning, to restore the missing values and the quality of algorithms operation.
机器学习在油田数据质量改进中的应用
本文描述了使用机器学习方法验证和恢复油田测量质量的主要可能性。给出了筛选错误值的基本方法,并推荐了解决以下三个问题的方法:测井数据的正确性分析、流体物理和化学性质的质量控制(PVT-studies)、基础生产和油井干预效果的分离(WI),以预测水力压裂(frac)的性能。主要交付成果是一套基于机器学习方法的算法,可以自动处理大量的现场数据。提出了许多方法,包括使用现代机器学习方法来恢复缺失值和算法运行质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信