M. Danelutto, T. D. Matteis, G. Mencagli, M. Torquati
{"title":"A divide-and-conquer parallel pattern implementation for multicores","authors":"M. Danelutto, T. D. Matteis, G. Mencagli, M. Torquati","doi":"10.1145/3002125.3002128","DOIUrl":null,"url":null,"abstract":"Divide-and-Conquer (DaC) is a sequential programming paradigm which models a large class of algorithms used in real-life applications. Although suitable to extract parallelism in a straightforward way, the parallel implementation of DaC algorithms still requires some expertise in parallel programming tools by the programmer. In this paper we aim at providing to non-expert programmers a high-level solution for fast prototyping parallel DaC programs on multicores with minimal programming effort. Following the rationale of parallel design pattern methodology, we design a C++11-compliant template interface for developing parallel DaC programs. The interface is implemented using different back-end frameworks (i.e. OpenMP, Intel TBB and FastFlow) supporting source code reuse and a certain amount of performance portability. Experiments on a 24-core Intel server show the effectiveness of our approach: with a reduced programming effort the programmer easily prototypes parallel versions with performance comparable with hand-made parallelizations.","PeriodicalId":106508,"journal":{"name":"Proceedings of the 3rd International Workshop on Software Engineering for Parallel Systems","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Workshop on Software Engineering for Parallel Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3002125.3002128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11
Abstract
Divide-and-Conquer (DaC) is a sequential programming paradigm which models a large class of algorithms used in real-life applications. Although suitable to extract parallelism in a straightforward way, the parallel implementation of DaC algorithms still requires some expertise in parallel programming tools by the programmer. In this paper we aim at providing to non-expert programmers a high-level solution for fast prototyping parallel DaC programs on multicores with minimal programming effort. Following the rationale of parallel design pattern methodology, we design a C++11-compliant template interface for developing parallel DaC programs. The interface is implemented using different back-end frameworks (i.e. OpenMP, Intel TBB and FastFlow) supporting source code reuse and a certain amount of performance portability. Experiments on a 24-core Intel server show the effectiveness of our approach: with a reduced programming effort the programmer easily prototypes parallel versions with performance comparable with hand-made parallelizations.