ASYMPTOTIC DYNAMICS OF A CLASS OF THIRD ORDER RATIONAL DIFFERENCE EQUATIONS

S. S. Hassan, Soma Mondal, S. Mandal, Chumki Sau
{"title":"ASYMPTOTIC DYNAMICS OF A CLASS OF THIRD ORDER RATIONAL DIFFERENCE EQUATIONS","authors":"S. S. Hassan, Soma Mondal, S. Mandal, Chumki Sau","doi":"10.20944/preprints202004.0114.v1","DOIUrl":null,"url":null,"abstract":"The asymptotic dynamics of the classes of rational difference equations (RDEs) of third order defined over the positive real-line as $$\\displaystyle{x_{n+1}=\\frac{x_{n}}{ax_n+bx_{n-1}+cx_{n-2}}}, \\displaystyle{x_{n+1}=\\frac{x_{n-1}}{ax_n+bx_{n-1}+cx_{n-2}}}, \\displaystyle{x_{n+1}=\\frac{x_{n-2}}{ax_n+bx_{n-1}+cx_{n-2}}}$$ and $$\\displaystyle{x_{n+1}=\\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n}}}, \\displaystyle{x_{n+1}=\\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-1}}}, \\displaystyle{x_{n+1}=\\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-2}}}$$ is investigated computationally with theoretical discussions and examples. It is noted that all the parameters $a, b, c$ and the initial values $x_{-2}, x_{-1}$ and $x_0$ are all positive real numbers such that the denominator is always positive. Several periodic solutions with high periods of the RDEs as well as their inter-intra dynamical behaviours are studied.","PeriodicalId":330387,"journal":{"name":"Far East Journal of Dynamical Systems","volume":"120 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Far East Journal of Dynamical Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20944/preprints202004.0114.v1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The asymptotic dynamics of the classes of rational difference equations (RDEs) of third order defined over the positive real-line as $$\displaystyle{x_{n+1}=\frac{x_{n}}{ax_n+bx_{n-1}+cx_{n-2}}}, \displaystyle{x_{n+1}=\frac{x_{n-1}}{ax_n+bx_{n-1}+cx_{n-2}}}, \displaystyle{x_{n+1}=\frac{x_{n-2}}{ax_n+bx_{n-1}+cx_{n-2}}}$$ and $$\displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n}}}, \displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-1}}}, \displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-2}}}$$ is investigated computationally with theoretical discussions and examples. It is noted that all the parameters $a, b, c$ and the initial values $x_{-2}, x_{-1}$ and $x_0$ are all positive real numbers such that the denominator is always positive. Several periodic solutions with high periods of the RDEs as well as their inter-intra dynamical behaviours are studied.
一类三阶有理差分方程的渐近动力学
通过理论讨论和算例,研究了在正实线上定义为$$\displaystyle{x_{n+1}=\frac{x_{n}}{ax_n+bx_{n-1}+cx_{n-2}}}, \displaystyle{x_{n+1}=\frac{x_{n-1}}{ax_n+bx_{n-1}+cx_{n-2}}}, \displaystyle{x_{n+1}=\frac{x_{n-2}}{ax_n+bx_{n-1}+cx_{n-2}}}$$和$$\displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n}}}, \displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-1}}}, \displaystyle{x_{n+1}=\frac{ax_n+bx_{n-1}+cx_{n-2}}{x_{n-2}}}$$的三阶有理差分方程的渐近动力学问题。值得注意的是,所有参数$a, b, c$以及初始值$x_{-2}, x_{-1}$和$x_0$都是正实数,因此分母总是正的。研究了RDEs的若干高周期解及其内部动力学行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信