Separating and tracking ERP subcomponents by constrained particle filtering

D. Jarchi, Bahador Makki Abadi, S. Sanei
{"title":"Separating and tracking ERP subcomponents by constrained particle filtering","authors":"D. Jarchi, Bahador Makki Abadi, S. Sanei","doi":"10.1109/ICDSP.2009.5201049","DOIUrl":null,"url":null,"abstract":"In this paper a new method based on particle filtering for separating and tracking event related-potential (ERP) subcomponents in different trials is presented. The latency and amplitude of each ERP subcomponent is formulated in the state space model. Based on some knowledge about ERP subcomponents, a constraint on the state space variables is provided to prevent the generation of invalid particles and also make use of a small number of particles which are most effective especially in high dimensions. The method is applied on the simulated and real P300 data. The algorithm has the ability of tracking P300 subcomponents i.e. P3a and P3b, in single trials even in the low signal-to-noise ratio situations.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper a new method based on particle filtering for separating and tracking event related-potential (ERP) subcomponents in different trials is presented. The latency and amplitude of each ERP subcomponent is formulated in the state space model. Based on some knowledge about ERP subcomponents, a constraint on the state space variables is provided to prevent the generation of invalid particles and also make use of a small number of particles which are most effective especially in high dimensions. The method is applied on the simulated and real P300 data. The algorithm has the ability of tracking P300 subcomponents i.e. P3a and P3b, in single trials even in the low signal-to-noise ratio situations.
基于约束粒子滤波的ERP子组件分离与跟踪
本文提出了一种基于粒子滤波的事件相关电位子分量分离与跟踪的新方法。在状态空间模型中表示了每个ERP子分量的延迟和幅度。在了解ERP子分量的基础上,对状态空间变量进行约束,防止无效粒子的产生,同时利用少量粒子在高维空间中最有效。将该方法应用于P300的模拟数据和实际数据。该算法具有在低信噪比情况下单次跟踪P300子分量即P3a和P3b的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信