Existence of Unpredictable Solutions and Chaos

M. Akhmet, M. O. Fen
{"title":"Existence of Unpredictable Solutions and Chaos","authors":"M. Akhmet, M. O. Fen","doi":"10.3906/MAT-1603-51","DOIUrl":null,"url":null,"abstract":"In paper [1] unpredictable points were introduced based on Poisson stability, and this gives rise to the existence of chaos in the quasi-minimal set. This time, an unpredictable function is determined as an unpredictable point in the Bebutov dynamical system. The existence of an unpredictable solution and consequently chaos of a quasi-linear system of ordinary differential equations are verified. This is the first time that the description of chaos is initiated from a single function, but not on a collection of them. The results can be easily extended to different types of differential equations. An application of the main theorem for Duffing equations is provided.","PeriodicalId":166772,"journal":{"name":"arXiv: Chaotic Dynamics","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Chaotic Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3906/MAT-1603-51","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

Abstract

In paper [1] unpredictable points were introduced based on Poisson stability, and this gives rise to the existence of chaos in the quasi-minimal set. This time, an unpredictable function is determined as an unpredictable point in the Bebutov dynamical system. The existence of an unpredictable solution and consequently chaos of a quasi-linear system of ordinary differential equations are verified. This is the first time that the description of chaos is initiated from a single function, but not on a collection of them. The results can be easily extended to different types of differential equations. An application of the main theorem for Duffing equations is provided.
不可预测解的存在性与混沌
在文献[1]中,基于泊松稳定性引入不可预测点,导致拟极小集存在混沌。这一次,一个不可预测的函数被确定为Bebutov动力系统中不可预测的点。证明了一类拟线性常微分方程系统的不可预测解的存在性及其混沌性。这是混沌的描述第一次从单个函数开始,而不是从它们的集合开始。结果可以很容易地推广到不同类型的微分方程。给出了Duffing方程主要定理的一个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信