CLAMOT: 3D Detection and Tracking via Multi-modal Feature Aggregation

Shuo Zhang, Xiaolong Liu, Wenqi Tao
{"title":"CLAMOT: 3D Detection and Tracking via Multi-modal Feature Aggregation","authors":"Shuo Zhang, Xiaolong Liu, Wenqi Tao","doi":"10.1145/3529446.3529451","DOIUrl":null,"url":null,"abstract":"In autonomous driving, multi-object tracking (MOT) can help vehicles perceive surroundings better and perform well-informed motion-planning. Methods based on LiDAR suffer from the sparsity of LiDAR points and detect only in a limited range. To this end, we propose a camera and LiDAR aggregation module named CLA-fusion to fuse the two modal features in a point-wise manner. The enhanced points can be used for extracting features through a 3D backbone. For the detection, we adopts a center-based method which means detecting the centers of objects by a keypoint detector and regressing other attributes, like 3D size, velocity, etc. In the tracking part, we use a simple but effective matching strategy, closest-point matching. According to the structure and characteristics of the whole framework, we name our model CLAMOT. Our experiments on nuScenes and Waymo benchmarks achieve competitive results.","PeriodicalId":151062,"journal":{"name":"Proceedings of the 4th International Conference on Image Processing and Machine Vision","volume":"109 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 4th International Conference on Image Processing and Machine Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3529446.3529451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In autonomous driving, multi-object tracking (MOT) can help vehicles perceive surroundings better and perform well-informed motion-planning. Methods based on LiDAR suffer from the sparsity of LiDAR points and detect only in a limited range. To this end, we propose a camera and LiDAR aggregation module named CLA-fusion to fuse the two modal features in a point-wise manner. The enhanced points can be used for extracting features through a 3D backbone. For the detection, we adopts a center-based method which means detecting the centers of objects by a keypoint detector and regressing other attributes, like 3D size, velocity, etc. In the tracking part, we use a simple but effective matching strategy, closest-point matching. According to the structure and characteristics of the whole framework, we name our model CLAMOT. Our experiments on nuScenes and Waymo benchmarks achieve competitive results.
CLAMOT:基于多模态特征聚合的三维检测和跟踪
在自动驾驶中,多目标跟踪(MOT)可以帮助车辆更好地感知周围环境并执行明智的运动规划。基于激光雷达的方法受到激光雷达点的稀疏性和探测范围的限制。为此,我们提出了一个名为CLA-fusion的相机和LiDAR聚合模块,以点为方向融合两个模态特征。增强点可用于通过三维主干提取特征。对于检测,我们采用基于中心的方法,即通过关键点检测器检测物体的中心,并回归其他属性,如3D尺寸,速度等。在跟踪部分,我们使用了一种简单而有效的匹配策略——最近点匹配。根据整个框架的结构和特点,我们将模型命名为CLAMOT。我们在nuScenes和Waymo基准上的实验取得了具有竞争力的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信