Towards Optimal Discriminating Order for Multiclass Classification

Dong Liu, Shuicheng Yan, Yadong Mu, Xiansheng Hua, Shih-Fu Chang, HongJiang Zhang
{"title":"Towards Optimal Discriminating Order for Multiclass Classification","authors":"Dong Liu, Shuicheng Yan, Yadong Mu, Xiansheng Hua, Shih-Fu Chang, HongJiang Zhang","doi":"10.1109/ICDM.2011.147","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate how to design an optimized discriminating order for boosting multiclass classification. The main idea is to optimize a binary tree architecture, referred to as Sequential Discriminating Tree (SDT), that performs the multiclass classification through a hierarchical sequence of coarse-to-fine binary classifiers. To infer such a tree architecture, we employ the constrained large margin clustering procedure which enforces samples belonging to the same class to locate at the same side of the hyper plane while maximizing the margin between these two partitioned class subsets. The proposed SDT algorithm has a theoretic error bound which is shown experimentally to effectively guarantee the generalization performance. Experiment results indicate that SDT clearly beats the state-of-the-art multiclass classification algorithms.","PeriodicalId":106216,"journal":{"name":"2011 IEEE 11th International Conference on Data Mining","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 11th International Conference on Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDM.2011.147","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

In this paper, we investigate how to design an optimized discriminating order for boosting multiclass classification. The main idea is to optimize a binary tree architecture, referred to as Sequential Discriminating Tree (SDT), that performs the multiclass classification through a hierarchical sequence of coarse-to-fine binary classifiers. To infer such a tree architecture, we employ the constrained large margin clustering procedure which enforces samples belonging to the same class to locate at the same side of the hyper plane while maximizing the margin between these two partitioned class subsets. The proposed SDT algorithm has a theoretic error bound which is shown experimentally to effectively guarantee the generalization performance. Experiment results indicate that SDT clearly beats the state-of-the-art multiclass classification algorithms.
多类分类的最优判别顺序研究
在本文中,我们研究了如何设计一个优化的判别顺序来促进多类分类。主要思想是优化二叉树架构,称为顺序判别树(SDT),它通过从粗到细的二叉分类器的分层序列执行多类分类。为了推断出这样的树结构,我们采用了约束的大边界聚类过程,该过程强制属于同一类的样本位于超平面的同一侧,同时最大化这两个划分的类子集之间的边界。所提出的SDT算法具有一定的理论误差界,实验证明该算法能有效地保证算法的泛化性能。实验结果表明,SDT明显优于最先进的多类分类算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信