Automatic recognition of regions of intrinsically poor multiple alignment using machine learning

Yunfeng Shan, E. Milios, A. Roger, C. Blouin, E. Susko
{"title":"Automatic recognition of regions of intrinsically poor multiple alignment using machine learning","authors":"Yunfeng Shan, E. Milios, A. Roger, C. Blouin, E. Susko","doi":"10.1109/CSB.2003.1227381","DOIUrl":null,"url":null,"abstract":"Phylogenetic analysis requires alignment of gene or protein sequences. Some regions of genes evolve fast and suffer numerous insertion and deletion events and cannot be aligned reliably with automatic alignment algorithms. Such regions of intrinsically uncertain alignment are currently detected and deleted manually before performing phylogenetic analysis. We present the results of a machine learning approach to detect regions of poor alignment automatically. We compare the results obtained from Naive Bayes (NB), C4.5 decision tree (C4.5) and support vector machine (SVM) approaches.","PeriodicalId":147883,"journal":{"name":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSB.2003.1227381","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Phylogenetic analysis requires alignment of gene or protein sequences. Some regions of genes evolve fast and suffer numerous insertion and deletion events and cannot be aligned reliably with automatic alignment algorithms. Such regions of intrinsically uncertain alignment are currently detected and deleted manually before performing phylogenetic analysis. We present the results of a machine learning approach to detect regions of poor alignment automatically. We compare the results obtained from Naive Bayes (NB), C4.5 decision tree (C4.5) and support vector machine (SVM) approaches.
利用机器学习自动识别本质上较差的多重对齐区域
系统发育分析需要对基因或蛋白质序列进行比对。基因的某些区域进化速度快,插入和删除事件多,无法用自动比对算法进行可靠的比对。在进行系统发育分析之前,这些本质上不确定的比对区域目前是手工检测和删除的。我们提出了一种机器学习方法的结果,用于自动检测对齐不良的区域。我们比较了朴素贝叶斯(NB)、C4.5决策树(C4.5)和支持向量机(SVM)方法得到的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信