Controller design using parametric neural networks

M. Hasheminejad, J. Murata, K. Hirasawa
{"title":"Controller design using parametric neural networks","authors":"M. Hasheminejad, J. Murata, K. Hirasawa","doi":"10.1109/SICE.1995.526694","DOIUrl":null,"url":null,"abstract":"A neural network (NN) of a more flexible internal structure than usual is used to design a better controller. A parametric NN (PNN) can represent both linear and nonlinear relationships explicitly and simultaneously by setting its parameters appropriately. In many cases we have some information about the system which enable us to build a linear controller for it. But of course this is not enough for treating nonlinear plants. Using PNN we could make a complimentary linearized controller and then, after starting the learning, in an online manner it will be extended to a nonlinear dominant controller.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

A neural network (NN) of a more flexible internal structure than usual is used to design a better controller. A parametric NN (PNN) can represent both linear and nonlinear relationships explicitly and simultaneously by setting its parameters appropriately. In many cases we have some information about the system which enable us to build a linear controller for it. But of course this is not enough for treating nonlinear plants. Using PNN we could make a complimentary linearized controller and then, after starting the learning, in an online manner it will be extended to a nonlinear dominant controller.
采用参数化神经网络设计控制器
采用一种内部结构更灵活的神经网络来设计更好的控制器。参数神经网络(PNN)通过适当设置参数,可以同时明确地表示线性和非线性关系。在许多情况下,我们有一些关于系统的信息,使我们能够为它建立一个线性控制器。当然,这对于处理非线性植物是不够的。使用PNN,我们可以制作一个互补的线性化控制器,然后,在开始学习后,以在线的方式将其扩展为非线性主导控制器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信