Deep Splitting and Merging for Table Structure Decomposition

Chris Tensmeyer, Vlad I. Morariu, Brian L. Price, Scott D. Cohen, Tony R. Martinez
{"title":"Deep Splitting and Merging for Table Structure Decomposition","authors":"Chris Tensmeyer, Vlad I. Morariu, Brian L. Price, Scott D. Cohen, Tony R. Martinez","doi":"10.1109/ICDAR.2019.00027","DOIUrl":null,"url":null,"abstract":"Given the large variety and complexity of tables, table structure extraction is a challenging task in automated document analysis systems. We present a pair of novel deep learning models (Split and Merge models) that given an input image, 1) predicts the basic table grid pattern and 2) predicts which grid elements should be merged to recover cells that span multiple rows or columns. We propose projection pooling as a novel component of the Split model and grid pooling as a novel part of the Merge model. While most Fully Convolutional Networks rely on local evidence, these unique pooling regions allow our models to take advantage of the global table structure. We achieve state-of-the-art performance on the public ICDAR 2013 Table Competition dataset of PDF documents. On a much larger private dataset which we used to train the models, we significantly outperform both a state-ofthe-art deep model and a major commercial software system.","PeriodicalId":325437,"journal":{"name":"2019 International Conference on Document Analysis and Recognition (ICDAR)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"55","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Document Analysis and Recognition (ICDAR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDAR.2019.00027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 55

Abstract

Given the large variety and complexity of tables, table structure extraction is a challenging task in automated document analysis systems. We present a pair of novel deep learning models (Split and Merge models) that given an input image, 1) predicts the basic table grid pattern and 2) predicts which grid elements should be merged to recover cells that span multiple rows or columns. We propose projection pooling as a novel component of the Split model and grid pooling as a novel part of the Merge model. While most Fully Convolutional Networks rely on local evidence, these unique pooling regions allow our models to take advantage of the global table structure. We achieve state-of-the-art performance on the public ICDAR 2013 Table Competition dataset of PDF documents. On a much larger private dataset which we used to train the models, we significantly outperform both a state-ofthe-art deep model and a major commercial software system.
表结构分解的深度拆分和合并
由于表的多样性和复杂性,表结构提取在自动化文档分析系统中是一项具有挑战性的任务。我们提出了一对新的深度学习模型(拆分和合并模型),给定输入图像,1)预测基本表网格模式,2)预测应该合并哪些网格元素以恢复跨多行或多列的单元格。我们提出投影池作为Split模型的新组件,网格池作为Merge模型的新组件。虽然大多数全卷积网络依赖于局部证据,但这些独特的池化区域允许我们的模型利用全局表结构。我们在PDF文档的公共ICDAR 2013表竞争数据集上实现了最先进的性能。在我们用来训练模型的更大的私有数据集上,我们的表现明显优于最先进的深度模型和主要的商业软件系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信