Real-time social network graph analysis using StreamMine3G

André Martin, Andrey Brito, C. Fetzer
{"title":"Real-time social network graph analysis using StreamMine3G","authors":"André Martin, Andrey Brito, C. Fetzer","doi":"10.1145/2933267.2933514","DOIUrl":null,"url":null,"abstract":"In this paper, we present our approach for solving the DEBS Grand Challenge 2016 using StreamMine3G, a distributed, highly scalable, elastic and fault tolerant event stream processing (ESP) system. We first provide an overview about StreamMine3G with regards to its programming model and architecture, followed by thorough description of the implementation for the two queries that provide up-to-date information about (i) the top-3 active posts and (ii) the top-k comments with the largest maximum cliques. Novel aspects of our implementation include (i) highly optimized data structures that lower the amount of lookups and traversals, and a (ii) deterministic data partitioning and processing scheme that allows the system to scale without bounds in an elastic fashion while still guaranteeing semantic transparency. In order to better utilize nowadays many-core machines, we furthermore propose a pipelining scheme in addition to data partitioning. Finally, we present a brief performance evaluation of our system.","PeriodicalId":277061,"journal":{"name":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th ACM International Conference on Distributed and Event-based Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2933267.2933514","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In this paper, we present our approach for solving the DEBS Grand Challenge 2016 using StreamMine3G, a distributed, highly scalable, elastic and fault tolerant event stream processing (ESP) system. We first provide an overview about StreamMine3G with regards to its programming model and architecture, followed by thorough description of the implementation for the two queries that provide up-to-date information about (i) the top-3 active posts and (ii) the top-k comments with the largest maximum cliques. Novel aspects of our implementation include (i) highly optimized data structures that lower the amount of lookups and traversals, and a (ii) deterministic data partitioning and processing scheme that allows the system to scale without bounds in an elastic fashion while still guaranteeing semantic transparency. In order to better utilize nowadays many-core machines, we furthermore propose a pipelining scheme in addition to data partitioning. Finally, we present a brief performance evaluation of our system.
实时社交网络图形分析使用StreamMine3G
在本文中,我们提出了使用StreamMine3G解决2016年DEBS大挑战的方法,StreamMine3G是一种分布式、高度可扩展、弹性和容错的事件流处理(ESP)系统。我们首先概述了StreamMine3G的编程模型和架构,然后详细描述了两个查询的实现,这两个查询提供了关于(i)最活跃的3个帖子和(ii)最活跃的k条评论的最新信息。我们实现的新颖方面包括:(i)高度优化的数据结构,降低了查找和遍历的数量,以及(ii)确定性数据分区和处理方案,允许系统以弹性方式无限制地扩展,同时仍然保证语义透明。为了更好地利用现在的多核机器,我们在数据分区的基础上进一步提出了一种流水线方案。最后,对系统进行了简要的性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信