Visualization and Visual Knowledge Discovery from Big Uncertain Data

C. Leung, Evan W. R. Madill, Adam G. M. Pazdor
{"title":"Visualization and Visual Knowledge Discovery from Big Uncertain Data","authors":"C. Leung, Evan W. R. Madill, Adam G. M. Pazdor","doi":"10.1109/IV56949.2022.00062","DOIUrl":null,"url":null,"abstract":"In the current uncertain world, data are kept growing bigger. Big data refer to the data flow of huge volume, high velocity, wide variety, and different levels of veracity (e.g., precise data, imprecise/uncertain data). Embedded in these big data are implicit, previously unknown, but valuable information and knowledge. With huge volumes of information and knowledge that can be discovered by techniques like data mining, a challenge is to validate and visualize the data mining results. To validate data for better data aggregation in estimation and prediction and for establishing trustworthy artificial intelligence, the synergy of visualization models and data mining strategies are needed. Hence, in this paper, we present a solution for visualization and visual knowledge discovery from big uncertain data. Our solution aims to discover knowledge in the form of frequently co-occurring patterns from big uncertain data and visualize the discovered knowledge. In particular, the solution shows the upper and lower bounds on frequency of these patterns. Evaluation with real-life Coronavirus disease 2019 (COVID-19) data demonstrates the effectiveness and practicality of our solution in visualization and visual knowledge discovery from big health informatics data collected from the current uncertain world.","PeriodicalId":153161,"journal":{"name":"2022 26th International Conference Information Visualisation (IV)","volume":"172 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 26th International Conference Information Visualisation (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IV56949.2022.00062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In the current uncertain world, data are kept growing bigger. Big data refer to the data flow of huge volume, high velocity, wide variety, and different levels of veracity (e.g., precise data, imprecise/uncertain data). Embedded in these big data are implicit, previously unknown, but valuable information and knowledge. With huge volumes of information and knowledge that can be discovered by techniques like data mining, a challenge is to validate and visualize the data mining results. To validate data for better data aggregation in estimation and prediction and for establishing trustworthy artificial intelligence, the synergy of visualization models and data mining strategies are needed. Hence, in this paper, we present a solution for visualization and visual knowledge discovery from big uncertain data. Our solution aims to discover knowledge in the form of frequently co-occurring patterns from big uncertain data and visualize the discovered knowledge. In particular, the solution shows the upper and lower bounds on frequency of these patterns. Evaluation with real-life Coronavirus disease 2019 (COVID-19) data demonstrates the effectiveness and practicality of our solution in visualization and visual knowledge discovery from big health informatics data collected from the current uncertain world.
大不确定数据的可视化和可视化知识发现
在当前这个不确定的世界里,数据越来越大。大数据是指量大、速度快、种类多、准确性等级不一的数据流(如精确数据、不精确/不确定数据)。这些大数据中隐含着以前未知的、但有价值的信息和知识。由于数据挖掘等技术可以发现大量的信息和知识,因此验证和可视化数据挖掘结果是一个挑战。为了验证数据,以便更好地在估计和预测中进行数据聚合,并建立可信的人工智能,需要可视化模型和数据挖掘策略的协同作用。因此,本文提出了一种基于大不确定数据的可视化和可视化知识发现的解决方案。我们的解决方案旨在从大不确定数据中以频繁共存模式的形式发现知识,并将发现的知识可视化。特别地,解显示了这些模式频率的上界和下界。以2019冠状病毒病(COVID-19)真实数据进行评估,证明了我们的解决方案在可视化和从当前不确定世界中收集的大健康信息学数据中发现视觉知识方面的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信