{"title":"On zero-reflection and zero-transmission of a stratified lossy medium","authors":"F. Mangini, F. Frezza","doi":"10.1109/URSI-EMTS.2016.7571511","DOIUrl":null,"url":null,"abstract":"In this paper a method to analyze the zero-reflection and zero-transmission conditions through a stratified lossy medium, is presented. The interaction of the electromagnetic radiation with the stratified material is taken into account by means of the transfer-matrix approach. The complex plane-wave propagation vectors are represented with the complex-angle formulation. In order to obtain these zero conditions an adaptive method has been adopted. A numerical code has been implemented to compute the field all-over the space. Some numerical applications, in order to obtain an electric matching layer for a large range of angles, are presented. This approach can be easily extended to an arbitrary number of layers to realize an intermediate layer with exotic properties.","PeriodicalId":400853,"journal":{"name":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 URSI International Symposium on Electromagnetic Theory (EMTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URSI-EMTS.2016.7571511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In this paper a method to analyze the zero-reflection and zero-transmission conditions through a stratified lossy medium, is presented. The interaction of the electromagnetic radiation with the stratified material is taken into account by means of the transfer-matrix approach. The complex plane-wave propagation vectors are represented with the complex-angle formulation. In order to obtain these zero conditions an adaptive method has been adopted. A numerical code has been implemented to compute the field all-over the space. Some numerical applications, in order to obtain an electric matching layer for a large range of angles, are presented. This approach can be easily extended to an arbitrary number of layers to realize an intermediate layer with exotic properties.