The effect of postmortem time and freezer storage on the mechanical properties of skeletal muscle

C. V. Ee, A. L. Chasse, B. Myers
{"title":"The effect of postmortem time and freezer storage on the mechanical properties of skeletal muscle","authors":"C. V. Ee, A. L. Chasse, B. Myers","doi":"10.4271/983155","DOIUrl":null,"url":null,"abstract":"Data is currently lacking to define the state of skeletal muscle properties within the cadaver. This study sought to define changes in the postmortem properties of skeletal muscle as a function of mechanical loading and freezer storage. The tibialis anterior of the New Zealand White rabbit was chosen for study. Modulus and no-load strain were found to vary greatly from live after 8 hours postmortem. Following the dynamic changes that occur at the onset and during rigor mortis, a semi-stable region of postmortem, post-rigor properties occurred between 36 to 72 hours postmortem. A freeze-thaw process was not found to have a significant effect on the post-rigor response. The first loading cycle response of post-rigor muscle was unrepeatable but stiffer than live passive muscle. After preconditioning, the post-rigor muscle response was repeatable but significantly less stiff than live passive muscle due to an increase in no-load strain. Failure properties of postmortem muscle were found to be significantly different than live passive muscle with significant decreases in failure stress (61%) and energy (81%), while failure strain was unchanged. Results suggest that the post-rigor response of cadaver muscle is unaffected by freezing but sensitive to even a few cycles of mechanical loading.","PeriodicalId":291036,"journal":{"name":"Publication of: Society of Automotive Engineers","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publication of: Society of Automotive Engineers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4271/983155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

Data is currently lacking to define the state of skeletal muscle properties within the cadaver. This study sought to define changes in the postmortem properties of skeletal muscle as a function of mechanical loading and freezer storage. The tibialis anterior of the New Zealand White rabbit was chosen for study. Modulus and no-load strain were found to vary greatly from live after 8 hours postmortem. Following the dynamic changes that occur at the onset and during rigor mortis, a semi-stable region of postmortem, post-rigor properties occurred between 36 to 72 hours postmortem. A freeze-thaw process was not found to have a significant effect on the post-rigor response. The first loading cycle response of post-rigor muscle was unrepeatable but stiffer than live passive muscle. After preconditioning, the post-rigor muscle response was repeatable but significantly less stiff than live passive muscle due to an increase in no-load strain. Failure properties of postmortem muscle were found to be significantly different than live passive muscle with significant decreases in failure stress (61%) and energy (81%), while failure strain was unchanged. Results suggest that the post-rigor response of cadaver muscle is unaffected by freezing but sensitive to even a few cycles of mechanical loading.
死后时间和冷藏对骨骼肌力学性能的影响
目前缺乏数据来定义尸体内骨骼肌特性的状态。本研究试图定义骨骼肌死后特性的变化,作为机械负荷和冷冻储存的功能。以新西兰大白兔胫骨前肌为研究对象。死后8小时,模量和空载应变与活体相差很大。在僵死开始和僵死期间发生的动态变化之后,一个半稳定的死后区域,僵死后属性发生在死后36至72小时之间。冻融过程没有发现对后严密性反应有显著影响。僵硬后肌肉的第一个加载周期反应是不可重复的,但比活的被动肌肉更僵硬。预处理后,僵硬后的肌肉反应是可重复的,但由于空载应变的增加,僵硬程度明显低于活动被动肌肉。死后肌肉的破坏特性与活的被动肌肉有显著差异,破坏应力(61%)和能量(81%)显著降低,而破坏应变不变。结果表明,尸体肌肉的僵直后反应不受冷冻的影响,但对甚至几个周期的机械负荷敏感。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信