Multiple hypotheses tracking for maneuvering targets in clutter environment

I. Whang, Jang-Gyu Lee
{"title":"Multiple hypotheses tracking for maneuvering targets in clutter environment","authors":"I. Whang, Jang-Gyu Lee","doi":"10.1109/SICE.1995.526735","DOIUrl":null,"url":null,"abstract":"In this paper, an optimal filter for maneuvering target tracking in clutter environment is derived by combining measurement association hypotheses and target model transition hypotheses. The optimal filter is not realizable since it should consider exponentially increasing hypotheses. To reduce the hypotheses, a new hypotheses pruning technique is proposed. And then a realizable suboptimal filter is suggested. Simulation results show that the proposed filter produces smaller estimation errors and takes better track maintenance than the interacting multiple model probabilistic data association filter.","PeriodicalId":344374,"journal":{"name":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE '95. Proceedings of the 34th SICE Annual Conference. International Session Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SICE.1995.526735","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper, an optimal filter for maneuvering target tracking in clutter environment is derived by combining measurement association hypotheses and target model transition hypotheses. The optimal filter is not realizable since it should consider exponentially increasing hypotheses. To reduce the hypotheses, a new hypotheses pruning technique is proposed. And then a realizable suboptimal filter is suggested. Simulation results show that the proposed filter produces smaller estimation errors and takes better track maintenance than the interacting multiple model probabilistic data association filter.
杂波环境下机动目标的多假设跟踪
结合测量关联假设和目标模型转移假设,推导了一种杂波环境下机动目标跟踪的最优滤波器。最优滤波器是不可实现的,因为它需要考虑指数增长的假设。为了减少假设,提出了一种新的假设修剪技术。然后提出了一种可实现的次优滤波器。仿真结果表明,该滤波器比交互多模型概率数据关联滤波器产生更小的估计误差和更好的航迹维护能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信