Low contention linearizable counting

M. Herlihy, N. Shavit, Orli Waarts
{"title":"Low contention linearizable counting","authors":"M. Herlihy, N. Shavit, Orli Waarts","doi":"10.1109/SFCS.1991.185415","DOIUrl":null,"url":null,"abstract":"The linearizable counting problem requires asynchronous concurrent processes to assign themselves successive values so that the order of the values assigned reflects the real-time order in which they were requested. It is shown that the problem can be solved without funneling all processes through a common memory location. Two new constructions for linearizable counting networks, data structures that solve the linearizable counting problem, are given. The first construction is nonblocking: some process takes a value after O(n) network gates have been traversed. The second construction is wait-free: it guarantees that each process takes a value after it traverses O(wn) gates, where w is a parameter affecting contention. It is shown that in any nonblocking or wait-free linearizable counting network, processes must traverse an average of Omega (n) gates, and so the constructions are close to optimal. A simpler and more efficient network is constructed by giving up the robustness requirements and allowing processes to wait for one another.<<ETX>>","PeriodicalId":320781,"journal":{"name":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","volume":"96 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1991-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"36","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"[1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SFCS.1991.185415","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 36

Abstract

The linearizable counting problem requires asynchronous concurrent processes to assign themselves successive values so that the order of the values assigned reflects the real-time order in which they were requested. It is shown that the problem can be solved without funneling all processes through a common memory location. Two new constructions for linearizable counting networks, data structures that solve the linearizable counting problem, are given. The first construction is nonblocking: some process takes a value after O(n) network gates have been traversed. The second construction is wait-free: it guarantees that each process takes a value after it traverses O(wn) gates, where w is a parameter affecting contention. It is shown that in any nonblocking or wait-free linearizable counting network, processes must traverse an average of Omega (n) gates, and so the constructions are close to optimal. A simpler and more efficient network is constructed by giving up the robustness requirements and allowing processes to wait for one another.<>
低争用线性计数
线性计数问题要求异步并发进程为自己分配连续的值,以便分配值的顺序反映请求它们的实时顺序。结果表明,不需要将所有进程集中到一个公共内存位置即可解决该问题。给出了两种新的线性计数网络结构,即解决线性计数问题的数据结构。第一个构造是非阻塞的:在遍历O(n)个网络门之后,某个进程接受一个值。第二个构造是无等待的:它保证每个进程在遍历O(wn)个门之后都有一个值,其中w是影响争用的参数。结果表明,在任何无阻塞或无等待的线性计数网络中,进程必须平均遍历ω (n)个门,因此结构接近最优。通过放弃鲁棒性要求,允许进程彼此等待,构建了一个更简单、更有效的网络。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信