Handwritten Music Symbol Classification Using Deep Convolutional Neural Networks

Sangkuk Lee, S. Son, Jiyong Oh, Nojun Kwak
{"title":"Handwritten Music Symbol Classification Using Deep Convolutional Neural Networks","authors":"Sangkuk Lee, S. Son, Jiyong Oh, Nojun Kwak","doi":"10.1109/ICISSEC.2016.7885856","DOIUrl":null,"url":null,"abstract":"In this paper, we utilize deep Convolutional Neural Networks (CNNs) to classify handwritten music symbols in HOMUS data set. HOMUS data set is made up of various types of strokes which contain time information and it is expected that online techniques are more appropriate for classification. However, experimental results show that CNN which does not use time information achieved classification accuracy around 94.6% which is way higher than 82% of dynamic time warping (DTW), the prior state-of-the-art online technique. Finally, we achieved the best accuracy around 95.6% with the ensemble of CNNs.","PeriodicalId":420224,"journal":{"name":"2016 International Conference on Information Science and Security (ICISS)","volume":"231 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information Science and Security (ICISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICISSEC.2016.7885856","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we utilize deep Convolutional Neural Networks (CNNs) to classify handwritten music symbols in HOMUS data set. HOMUS data set is made up of various types of strokes which contain time information and it is expected that online techniques are more appropriate for classification. However, experimental results show that CNN which does not use time information achieved classification accuracy around 94.6% which is way higher than 82% of dynamic time warping (DTW), the prior state-of-the-art online technique. Finally, we achieved the best accuracy around 95.6% with the ensemble of CNNs.
使用深度卷积神经网络的手写音乐符号分类
在本文中,我们利用深度卷积神经网络(cnn)对HOMUS数据集中的手写音乐符号进行分类。HOMUS数据集由各种类型的笔画组成,其中包含时间信息,期望在线技术更适合于分类。然而,实验结果表明,不使用时间信息的CNN的分类准确率达到了94.6%左右,远远高于目前最先进的在线技术动态时间翘曲(DTW)的82%。最后,我们在cnn的集合下获得了95.6%左右的最佳准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信