Cloud-based realtime robotic Visual SLAM

P. Benavidez, Mohan Muppidi, P. Rad, John J. Prevost, M. Jamshidi, L. Brown
{"title":"Cloud-based realtime robotic Visual SLAM","authors":"P. Benavidez, Mohan Muppidi, P. Rad, John J. Prevost, M. Jamshidi, L. Brown","doi":"10.1109/SYSCON.2015.7116844","DOIUrl":null,"url":null,"abstract":"Prior work has shown that Visual SLAM (VSLAM) algorithms can successfully be used for realtime processing on local robots. As the data processing requirements increase, due to image size or robot velocity constraints, local processing may no longer be practical. Offloading the VSLAM processing to systems running in a cloud deployment of Robot Operating System (ROS) is proposed as a method for managing increasing processing constraints. The traditional bottleneck with VSLAM performing feature identification and matching across a large database. In this paper, we present a system and algorithms to reduce computational time and storage requirements for feature identification and matching components of VSLAM by offloading the processing to a cloud comprised of a cluster of compute nodes. We compare this new approach to our prior approach where only the local resources of the robot were used, and examine the increase in throughput made possible with this new processing architecture.","PeriodicalId":251318,"journal":{"name":"2015 Annual IEEE Systems Conference (SysCon) Proceedings","volume":"125 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Annual IEEE Systems Conference (SysCon) Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYSCON.2015.7116844","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43

Abstract

Prior work has shown that Visual SLAM (VSLAM) algorithms can successfully be used for realtime processing on local robots. As the data processing requirements increase, due to image size or robot velocity constraints, local processing may no longer be practical. Offloading the VSLAM processing to systems running in a cloud deployment of Robot Operating System (ROS) is proposed as a method for managing increasing processing constraints. The traditional bottleneck with VSLAM performing feature identification and matching across a large database. In this paper, we present a system and algorithms to reduce computational time and storage requirements for feature identification and matching components of VSLAM by offloading the processing to a cloud comprised of a cluster of compute nodes. We compare this new approach to our prior approach where only the local resources of the robot were used, and examine the increase in throughput made possible with this new processing architecture.
基于云的实时机器人视觉SLAM
先前的研究表明,视觉SLAM (VSLAM)算法可以成功地用于本地机器人的实时处理。随着数据处理需求的增加,由于图像大小或机器人速度的限制,局部处理可能不再实用。将VSLAM处理卸载到运行在机器人操作系统(ROS)云部署中的系统中,作为管理日益增加的处理约束的一种方法。传统的瓶颈是VSLAM在大型数据库中执行特征识别和匹配。在本文中,我们提出了一种系统和算法,通过将处理卸载到由计算节点集群组成的云来减少VSLAM特征识别和匹配组件的计算时间和存储需求。我们将这种新方法与之前只使用机器人本地资源的方法进行比较,并检查这种新处理架构可能带来的吞吐量增加。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信