{"title":"Control scheme based on the inverse system method online learning BP neural network adaptive compensate","authors":"Xiang-xiang Gao, Ru Jiang, M. Gao","doi":"10.1109/ICICISYS.2010.5658359","DOIUrl":null,"url":null,"abstract":"In this paper, an online BP neural network (BPNN) compensate control scheme based on inverse system method is presented for a class of single-input—single-output nonlinear systems. Firstly, the error between the α-th derivative of the system output and the pseudo-control is analyzed and a BPNN is designed to compensate the error. Then, an adaptive algorithm of the BPNN, designed based on the Lyapunov stability theory, proves that tracking error of closed-loop system and weight estimation error of BPNN are uniform ultimate boundedness. Simulations for three nonlinear systems demonstrate the validity of the proposed control scheme??","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, an online BP neural network (BPNN) compensate control scheme based on inverse system method is presented for a class of single-input—single-output nonlinear systems. Firstly, the error between the α-th derivative of the system output and the pseudo-control is analyzed and a BPNN is designed to compensate the error. Then, an adaptive algorithm of the BPNN, designed based on the Lyapunov stability theory, proves that tracking error of closed-loop system and weight estimation error of BPNN are uniform ultimate boundedness. Simulations for three nonlinear systems demonstrate the validity of the proposed control scheme??