Control scheme based on the inverse system method online learning BP neural network adaptive compensate

Xiang-xiang Gao, Ru Jiang, M. Gao
{"title":"Control scheme based on the inverse system method online learning BP neural network adaptive compensate","authors":"Xiang-xiang Gao, Ru Jiang, M. Gao","doi":"10.1109/ICICISYS.2010.5658359","DOIUrl":null,"url":null,"abstract":"In this paper, an online BP neural network (BPNN) compensate control scheme based on inverse system method is presented for a class of single-input—single-output nonlinear systems. Firstly, the error between the α-th derivative of the system output and the pseudo-control is analyzed and a BPNN is designed to compensate the error. Then, an adaptive algorithm of the BPNN, designed based on the Lyapunov stability theory, proves that tracking error of closed-loop system and weight estimation error of BPNN are uniform ultimate boundedness. Simulations for three nonlinear systems demonstrate the validity of the proposed control scheme??","PeriodicalId":339711,"journal":{"name":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Intelligent Computing and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICISYS.2010.5658359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an online BP neural network (BPNN) compensate control scheme based on inverse system method is presented for a class of single-input—single-output nonlinear systems. Firstly, the error between the α-th derivative of the system output and the pseudo-control is analyzed and a BPNN is designed to compensate the error. Then, an adaptive algorithm of the BPNN, designed based on the Lyapunov stability theory, proves that tracking error of closed-loop system and weight estimation error of BPNN are uniform ultimate boundedness. Simulations for three nonlinear systems demonstrate the validity of the proposed control scheme??
控制方案基于逆系统法在线学习BP神经网络自适应补偿
针对一类单输入-单输出非线性系统,提出了一种基于逆系统法的在线BP神经网络补偿控制方案。首先,分析了系统输出的α-阶导数与伪控制之间的误差,并设计了bp神经网络进行补偿。然后,基于Lyapunov稳定性理论设计了一种自适应BPNN算法,证明了闭环系统的跟踪误差和BPNN的权值估计误差是一致的最终有界性。对三个非线性系统的仿真验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信