Multi-Scale Background Suppression Anomaly Detection In Surveillance Videos

Yang Zhen, Yuanfan Guo, Jinjie Wei, Xiuguo Bao, Di Huang
{"title":"Multi-Scale Background Suppression Anomaly Detection In Surveillance Videos","authors":"Yang Zhen, Yuanfan Guo, Jinjie Wei, Xiuguo Bao, Di Huang","doi":"10.1109/ICIP42928.2021.9506580","DOIUrl":null,"url":null,"abstract":"Video anomaly detection has been widely applied in various surveillance systems for public security. However, the existing weakly supervised video anomaly detection methods tend to ignore the interference of the background frames and possess limited ability to extract effective temporal information among the video snippets. In this paper, a multi-scale background suppression based anomaly detection (MSBSAD) method is proposed to suppress the interference of the background frames. We propose a multi-scale temporal convolution module to effectively extract more temporal information among the video snippets for the anomaly events with different durations. A modified hinge loss is constructed in the suppression branch to help our model to better differentiate the abnormal samples from the confusing samples. Experiments on UCF Crime demonstrate the superiority of our MS-BSAD method in the video anomaly detection task.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506580","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Video anomaly detection has been widely applied in various surveillance systems for public security. However, the existing weakly supervised video anomaly detection methods tend to ignore the interference of the background frames and possess limited ability to extract effective temporal information among the video snippets. In this paper, a multi-scale background suppression based anomaly detection (MSBSAD) method is proposed to suppress the interference of the background frames. We propose a multi-scale temporal convolution module to effectively extract more temporal information among the video snippets for the anomaly events with different durations. A modified hinge loss is constructed in the suppression branch to help our model to better differentiate the abnormal samples from the confusing samples. Experiments on UCF Crime demonstrate the superiority of our MS-BSAD method in the video anomaly detection task.
监控视频中的多尺度背景抑制异常检测
视频异常检测已广泛应用于各种公安监控系统中。然而,现有的弱监督视频异常检测方法往往忽略背景帧的干扰,提取视频片段中有效时间信息的能力有限。本文提出了一种基于多尺度背景抑制的异常检测(MSBSAD)方法来抑制背景帧的干扰。针对不同持续时间的异常事件,提出了一种多尺度时间卷积模块,可以有效地从视频片段中提取更多的时间信息。在抑制分支中构造了一个改进的铰链损失,以帮助我们的模型更好地区分异常样本和混淆样本。针对UCF犯罪的实验证明了MS-BSAD方法在视频异常检测任务中的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信