A Gaussian mixture model representation of endmember variability for spectral unmixing

Yuan Zhou, Anand Rangarajan, P. Gader
{"title":"A Gaussian mixture model representation of endmember variability for spectral unmixing","authors":"Yuan Zhou, Anand Rangarajan, P. Gader","doi":"10.1109/WHISPERS.2016.8071802","DOIUrl":null,"url":null,"abstract":"Endmember variability complicates the problem of spectral unmixing. This variability is typically represented by probability distributions or spectral libraries. The present work describes a new distributional representation based on Gaussian Mixture Models (GMMs). The most common form in this setting is the Normal Compositional Model (NCM), wherein the endmembers for each pixel are modeled as samples drawn from unimodal Gaussians. In reality, however, the distribution of spectra from a material may be multi-modal. We first show that a linear combination of GMM random variables is also a GMM. This allows us to probabilistically formulate hyperspectral pixel likelihoods as combinations of independent endmember random variables. Then, after adding a reasonable smoothness and sparsity prior on the abundances, we obtain a standard Bayesian maximum a posteriori (MAP) problem for abundance and endmember parameter estimation. A generalized expectation-maximization (EM) algorithm is used to minimize the MAP objective function. We tested the GMM approach on two real datasets, and showcased its efficacy for modeling endmember variability by comparing it to current popular methods.","PeriodicalId":369281,"journal":{"name":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","volume":"239 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 8th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHISPERS.2016.8071802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Endmember variability complicates the problem of spectral unmixing. This variability is typically represented by probability distributions or spectral libraries. The present work describes a new distributional representation based on Gaussian Mixture Models (GMMs). The most common form in this setting is the Normal Compositional Model (NCM), wherein the endmembers for each pixel are modeled as samples drawn from unimodal Gaussians. In reality, however, the distribution of spectra from a material may be multi-modal. We first show that a linear combination of GMM random variables is also a GMM. This allows us to probabilistically formulate hyperspectral pixel likelihoods as combinations of independent endmember random variables. Then, after adding a reasonable smoothness and sparsity prior on the abundances, we obtain a standard Bayesian maximum a posteriori (MAP) problem for abundance and endmember parameter estimation. A generalized expectation-maximization (EM) algorithm is used to minimize the MAP objective function. We tested the GMM approach on two real datasets, and showcased its efficacy for modeling endmember variability by comparing it to current popular methods.
光谱解混中端元变异性的高斯混合模型
端元变异性使光谱分解问题复杂化。这种可变性通常用概率分布或谱库表示。本文描述了一种新的基于高斯混合模型的分布表示。在这种情况下,最常见的形式是正常组成模型(NCM),其中每个像素的端元都被建模为从单峰高斯分布中提取的样本。然而,实际上,来自材料的光谱分布可能是多模态的。我们首先证明了GMM随机变量的线性组合也是一个GMM。这使我们能够以概率形式将高光谱像素可能性表述为独立端元随机变量的组合。然后,在丰度上加入合理的平滑性和稀疏性先验后,我们得到了丰度和端元参数估计的标准贝叶斯最大后验(MAP)问题。采用广义期望最大化(EM)算法对MAP目标函数进行最小化。我们在两个真实数据集上测试了GMM方法,并通过将其与当前流行的方法进行比较,展示了其对端元变异性建模的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信