A Curvature Based Method for Blind Mesh Visual Quality Assessment Using a General Regression Neural Network

Ilyass Abouelaziz, M. Hassouni, H. Cherifi
{"title":"A Curvature Based Method for Blind Mesh Visual Quality Assessment Using a General Regression Neural Network","authors":"Ilyass Abouelaziz, M. Hassouni, H. Cherifi","doi":"10.1109/SITIS.2016.130","DOIUrl":null,"url":null,"abstract":"No-reference quality assessment is a challenging issue due to the non-existence of any information related to the reference and the unknown distortion type. The main goal is to design a computational method to objectively predict the human perceived quality of a distorted mesh and deal with the practical situation when the reference is not available. In this work, we design a no reference method that relies on the general regression neural network (GRNN). Our network is trained using the mean curvature which is an important perceptual feature representing the visual aspect of a 3D mesh. Relatively to the human subjective scores, the trained network successfully assesses the visual quality, in addition, the experimental results show that the proposed method provides good correlations with the subject scores and competitive scores comparing to some influential and effective full and reduced reference existing metrics.","PeriodicalId":403704,"journal":{"name":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 12th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SITIS.2016.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

No-reference quality assessment is a challenging issue due to the non-existence of any information related to the reference and the unknown distortion type. The main goal is to design a computational method to objectively predict the human perceived quality of a distorted mesh and deal with the practical situation when the reference is not available. In this work, we design a no reference method that relies on the general regression neural network (GRNN). Our network is trained using the mean curvature which is an important perceptual feature representing the visual aspect of a 3D mesh. Relatively to the human subjective scores, the trained network successfully assesses the visual quality, in addition, the experimental results show that the proposed method provides good correlations with the subject scores and competitive scores comparing to some influential and effective full and reduced reference existing metrics.
基于曲率的广义回归神经网络盲网格视觉质量评价方法
由于不存在与参考文献相关的任何信息以及未知的失真类型,无参考文献质量评估是一个具有挑战性的问题。主要目标是设计一种计算方法来客观地预测变形网格的人类感知质量,并处理没有参考资料时的实际情况。在这项工作中,我们设计了一种依赖于一般回归神经网络(GRNN)的无参考方法。我们的网络是使用平均曲率来训练的,这是一个重要的感知特征,代表了3D网格的视觉方面。相对于人类的主观评分,训练后的网络能够成功地评估视觉质量。此外,实验结果表明,与一些有影响和有效的完整和简化的参考现有指标相比,所提出的方法与主题分数和竞争分数具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信