A recurrent RBF network model for nearest neighbor classification

M. K. Muezzinoglu, J.M. Zuracla
{"title":"A recurrent RBF network model for nearest neighbor classification","authors":"M. K. Muezzinoglu, J.M. Zuracla","doi":"10.1109/IJCNN.2005.1555854","DOIUrl":null,"url":null,"abstract":"Superposition of radial basis functions centered at given prototype patterns constitutes one of the most suitable energy forms for gradient systems that perform nearest neighbor classification with real-valued static prototypes. It is shown in this paper that a continuous-time dynamical neural network model, employing a radial basis function and a sigmoid multilayer perceptron sub-networks, is capable of maximizing such an energy form locally, thus performing almost perfectly nearest neighbor classification, when initiated by a distorted pattern. The dynamical classification scheme implemented by the network eliminates all comparisons, which are the vital steps of the conventional nearest neighbor classification process. The performance of the proposed network model is demonstrated on image reconstruction applications.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555854","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Superposition of radial basis functions centered at given prototype patterns constitutes one of the most suitable energy forms for gradient systems that perform nearest neighbor classification with real-valued static prototypes. It is shown in this paper that a continuous-time dynamical neural network model, employing a radial basis function and a sigmoid multilayer perceptron sub-networks, is capable of maximizing such an energy form locally, thus performing almost perfectly nearest neighbor classification, when initiated by a distorted pattern. The dynamical classification scheme implemented by the network eliminates all comparisons, which are the vital steps of the conventional nearest neighbor classification process. The performance of the proposed network model is demonstrated on image reconstruction applications.
一种用于最近邻分类的循环RBF网络模型
以给定原型模式为中心的径向基函数的叠加构成了对具有实值静态原型的梯度系统进行最近邻分类最合适的能量形式之一。本文表明,采用径向基函数和s型多层感知器子网络的连续时间动态神经网络模型能够在局部最大化这种能量形式,从而在由扭曲模式启动时执行几乎完美的最近邻分类。该网络实现的动态分类方案消除了传统最近邻分类过程中至关重要的所有比较。在图像重建应用中验证了该网络模型的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信