Sliding Mode Set-Point Control of a Three-DOF Cable-Suspended Parallel Robot With Uncertain Mass and Disturbances

Ping Ren, Xu Sheng
{"title":"Sliding Mode Set-Point Control of a Three-DOF Cable-Suspended Parallel Robot With Uncertain Mass and Disturbances","authors":"Ping Ren, Xu Sheng","doi":"10.1115/detc2019-97275","DOIUrl":null,"url":null,"abstract":"\n Cable-Suspended Parallel Robots (CSPRs) utilize winches and cables as the actuation scheme instead of rigid links, which renders them advantages of both parallel mechanisms and cable mechanisms. In this paper, a robust sliding mode controller was designed for a three-degree-of-freedom CSPR with uncertain end-effector mass and external disturbances. To control the motions of CSPRs is usually challenging due to the unidirectional constraints of cable tensions. Based on interval analysis, a set of analytical inequalities is obtained which establish the relationship between the cables’ tension constraints and the controller parameters. The sufficient conditions of the controller parameters satisfying the constraints are obtained for the set-point motion subject to uncertainties. Numerical simulations are presented to verify the effectiveness of the proposed approach.","PeriodicalId":178253,"journal":{"name":"Volume 5A: 43rd Mechanisms and Robotics Conference","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5A: 43rd Mechanisms and Robotics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/detc2019-97275","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cable-Suspended Parallel Robots (CSPRs) utilize winches and cables as the actuation scheme instead of rigid links, which renders them advantages of both parallel mechanisms and cable mechanisms. In this paper, a robust sliding mode controller was designed for a three-degree-of-freedom CSPR with uncertain end-effector mass and external disturbances. To control the motions of CSPRs is usually challenging due to the unidirectional constraints of cable tensions. Based on interval analysis, a set of analytical inequalities is obtained which establish the relationship between the cables’ tension constraints and the controller parameters. The sufficient conditions of the controller parameters satisfying the constraints are obtained for the set-point motion subject to uncertainties. Numerical simulations are presented to verify the effectiveness of the proposed approach.
具有不确定质量和扰动的三自由度悬索并联机器人滑模设定点控制
悬索并联机器人(CSPRs)采用绞车和缆绳作为驱动机构,而不是采用刚性连杆,这使其具有并联机构和缆绳机构的双重优点。针对具有末端执行器质量不确定和外部干扰的三自由度CSPR,设计了一种鲁棒滑模控制器。由于缆索张力的单向约束,控制CSPRs的运动通常具有挑战性。基于区间分析,得到了一组解析不等式,建立了索张力约束与控制器参数之间的关系。对具有不确定性的设定点运动,得到了控制器参数满足约束的充分条件。通过数值仿真验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信