Towards a Moderate-Granularity Incremental Clustering Algorithm for GPU

Chunlei Chen, Dejun Mu, Huixiang Zhang, Wei Hu
{"title":"Towards a Moderate-Granularity Incremental Clustering Algorithm for GPU","authors":"Chunlei Chen, Dejun Mu, Huixiang Zhang, Wei Hu","doi":"10.1109/CyberC.2013.38","DOIUrl":null,"url":null,"abstract":"The incremental clustering algorithm plays a vital role in big data processing. The massive data problems generally raise high computation demand on the hardware platform. GPU-based parallel computing is a promising method to satisfy this demand. However, the existing incremental clustering algorithms face an accuracy-parallelism dilemma when accelerated by GPU. The block-wise algorithms evolve the clusters in coarse granularity and sacrifice accuracy for parallelism, while the point-wise algorithms proceed in fine granularity and barter parallelism for accuracy. We propose a moderate-granularity algorithm. This algorithm constantly generates micro-clusters from the incoming data blocks, and then evolves the clusters in the granularity of a micro-cluster. The proposed algorithm takes the following advantages: first, it avoids predefining a cluster number searching range like block-wise algorithms, second, it alleviates the accuracy problem caused by coarse granularity, third, it adopts the parallel-friendly algorithm to generate micro-clusters and decreases the amount of serial operations, so that it is parallelism-scalable compared to point-wise algorithms. Experiments on a CPU-GPU hybrid platform show that our algorithm can achieve comparable accuracy to its batch counterpart and is scalable in terms of parallelism.","PeriodicalId":133756,"journal":{"name":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Cyber-Enabled Distributed Computing and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CyberC.2013.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The incremental clustering algorithm plays a vital role in big data processing. The massive data problems generally raise high computation demand on the hardware platform. GPU-based parallel computing is a promising method to satisfy this demand. However, the existing incremental clustering algorithms face an accuracy-parallelism dilemma when accelerated by GPU. The block-wise algorithms evolve the clusters in coarse granularity and sacrifice accuracy for parallelism, while the point-wise algorithms proceed in fine granularity and barter parallelism for accuracy. We propose a moderate-granularity algorithm. This algorithm constantly generates micro-clusters from the incoming data blocks, and then evolves the clusters in the granularity of a micro-cluster. The proposed algorithm takes the following advantages: first, it avoids predefining a cluster number searching range like block-wise algorithms, second, it alleviates the accuracy problem caused by coarse granularity, third, it adopts the parallel-friendly algorithm to generate micro-clusters and decreases the amount of serial operations, so that it is parallelism-scalable compared to point-wise algorithms. Experiments on a CPU-GPU hybrid platform show that our algorithm can achieve comparable accuracy to its batch counterpart and is scalable in terms of parallelism.
面向GPU的中粒度增量聚类算法研究
增量聚类算法在大数据处理中起着至关重要的作用。海量数据问题普遍对硬件平台提出了很高的计算需求。基于gpu的并行计算是满足这一需求的一种很有前途的方法。然而,现有的增量聚类算法在GPU加速时面临精度-并行性的困境。分块算法以粗粒度发展聚类,牺牲精度以换取并行性,而点算法以细粒度发展聚类,以并行性换取精度。我们提出了一个中等粒度的算法。该算法不断地从传入的数据块中生成微聚类,然后以微聚类的粒度进行演化。该算法具有以下优点:一是避免了像块算法那样预先定义簇数搜索范围;二是缓解了粗粒度带来的精度问题;三是采用并行友好的算法生成微簇,减少了串行运算量,与点算法相比具有并行可扩展性。在CPU-GPU混合平台上的实验表明,该算法可以达到与批处理算法相当的精度,并且在并行度方面具有可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信