Accurate Numerical Method for Singular Initial-Value Problems

T. A. Bullo, G. Duressa, G. G. Kiltu
{"title":"Accurate Numerical Method for Singular Initial-Value Problems","authors":"T. A. Bullo, G. Duressa, G. G. Kiltu","doi":"10.5121/acii.2021.8301","DOIUrl":null,"url":null,"abstract":"In this paper, an accurate numerical method is presented to find the numerical solution of the singular initial value problems. The second-order singular initial value problem under consideration is transferred into a first-order system of initial value problems, and then it can be solved by using the fifth-order Runge Kutta method. The stability and convergence analysis is studied. The effectiveness of the proposed methods is confirmed by solving three model examples, and the obtained approximate solutions are compared with the existing methods in the literature. Thus, the fifth-order Runge-Kutta method is an accurate numerical method for solving the singular initial value problems.","PeriodicalId":337615,"journal":{"name":"Advanced Computational Intelligence: An International Journal (ACII)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Computational Intelligence: An International Journal (ACII)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/acii.2021.8301","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, an accurate numerical method is presented to find the numerical solution of the singular initial value problems. The second-order singular initial value problem under consideration is transferred into a first-order system of initial value problems, and then it can be solved by using the fifth-order Runge Kutta method. The stability and convergence analysis is studied. The effectiveness of the proposed methods is confirmed by solving three model examples, and the obtained approximate solutions are compared with the existing methods in the literature. Thus, the fifth-order Runge-Kutta method is an accurate numerical method for solving the singular initial value problems.
奇异初值问题的精确数值方法
本文给出了一种求奇异初值问题数值解的精确数值方法。将所考虑的二阶奇异初值问题转化为一阶初值问题系统,然后用五阶龙格库塔方法求解。研究了该算法的稳定性和收敛性。通过对三个模型算例的求解,验证了所提方法的有效性,并将所得到的近似解与文献中已有的方法进行了比较。因此,五阶龙格-库塔法是求解奇异初值问题的一种精确的数值方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信