Indirect field-oriented linear induction motor drive with Petri fuzzy-neural-network control

R. Wai, Chia-Chin Chu
{"title":"Indirect field-oriented linear induction motor drive with Petri fuzzy-neural-network control","authors":"R. Wai, Chia-Chin Chu","doi":"10.1109/IJCNN.2005.1555860","DOIUrl":null,"url":null,"abstract":"This study focuses on the development of a Petri fuzzy-neural-network (PFNN) control for an indirect field-oriented linear induction motor (LIM) drive. The concept of a Petri net (PIN) is incorporated into a traditional fuzzy-neural-network (TFNN) to form a newly-type PFNN framework for alleviating the computation burden. Moreover, the supervised gradient descent method is used to develop the online training algorithm for the PFNN. In order to guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates of the PFNN. With the proposed PFNN control system, the mover position of the controlled LIM drive possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic reference trajectories. In addition, the effectiveness of the proposed control scheme is verified by numerical simulations.","PeriodicalId":365690,"journal":{"name":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2005.1555860","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

This study focuses on the development of a Petri fuzzy-neural-network (PFNN) control for an indirect field-oriented linear induction motor (LIM) drive. The concept of a Petri net (PIN) is incorporated into a traditional fuzzy-neural-network (TFNN) to form a newly-type PFNN framework for alleviating the computation burden. Moreover, the supervised gradient descent method is used to develop the online training algorithm for the PFNN. In order to guarantee the convergence of tracking error, analytical methods based on a discrete-type Lyapunov function are proposed to determine the varied learning rates of the PFNN. With the proposed PFNN control system, the mover position of the controlled LIM drive possesses the advantages of good transient control performance and robustness to uncertainties for the tracking of periodic reference trajectories. In addition, the effectiveness of the proposed control scheme is verified by numerical simulations.
基于Petri模糊神经网络控制的间接磁场定向线性感应电机驱动
本文研究了一种基于Petri模糊神经网络(PFNN)的间接磁场定向线性感应电动机(LIM)控制方法。将Petri网(PIN)的概念融入到传统的模糊神经网络(TFNN)中,形成一种新型的PFNN框架,以减轻计算量。此外,采用监督梯度下降法开发了PFNN的在线训练算法。为了保证跟踪误差的收敛性,提出了一种基于离散型Lyapunov函数的解析方法来确定PFNN的不同学习率。利用所提出的PFNN控制系统,被控LIM驱动器的运动位置具有良好的瞬态控制性能和对周期参考轨迹跟踪的不确定性的鲁棒性。最后,通过数值仿真验证了所提控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信