Benjamin Ošlaj, P. Slibar, M. Truntič, M. Milanovič
{"title":"Synchronous Buck-Boost Converter for Energy Harvesting Application","authors":"Benjamin Ošlaj, P. Slibar, M. Truntič, M. Milanovič","doi":"10.1109/EPEPEMC.2018.8521876","DOIUrl":null,"url":null,"abstract":"High-temperature thermoelectric generators (TEGs) can be exploited for electrical energy harvesting in a variety of industrial processes that generate excess heat. In order to harvest the maximum amount of energy, a power converter in combination with a maximum power point tracking (MPPT) algorithm is required. This work presents a different approach of using a synchronous buck-boost converter in combination with the perturb and observe (P&O) MPPT algorithm, that uses a variable step size control for improved dynamics. The buck-boost converter is connected to a battery, that is being charged using the TEGs. Experimental results of the implemented MPPT algorithm are shown to prove that the converter reaches the maximum power point in a reasonable time interval. The measured efficiency of the converter is between 96-and 97 %.","PeriodicalId":251046,"journal":{"name":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 18th International Power Electronics and Motion Control Conference (PEMC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EPEPEMC.2018.8521876","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
High-temperature thermoelectric generators (TEGs) can be exploited for electrical energy harvesting in a variety of industrial processes that generate excess heat. In order to harvest the maximum amount of energy, a power converter in combination with a maximum power point tracking (MPPT) algorithm is required. This work presents a different approach of using a synchronous buck-boost converter in combination with the perturb and observe (P&O) MPPT algorithm, that uses a variable step size control for improved dynamics. The buck-boost converter is connected to a battery, that is being charged using the TEGs. Experimental results of the implemented MPPT algorithm are shown to prove that the converter reaches the maximum power point in a reasonable time interval. The measured efficiency of the converter is between 96-and 97 %.