{"title":"Implementing parallel conjugate gradient on the EARTH multithreaded architecture","authors":"Fei Chen, K. B. Theobald, G. Gao","doi":"10.1109/CLUSTR.2004.1392645","DOIUrl":null,"url":null,"abstract":"Conjugate gradient (CG) is one of the most popular iterative approaches to solving large sparse linear systems of equations. This work reports a parallel implementation of CG on clusters with EARTH multithreaded runtime support. Interphase and intraphase communication costs are balanced using a two-dimensional blocking method, minimizing overall communication costs. EARTH'S adaptive, event-driven multithreaded execution model gives additional opportunities to overlap communication and computation to achieve even better scalability. Experiments on a large Beowulf cluster with gigabit Ethernet show notable improvements over other parallel CG implementations. For example, with the NAS CG benchmark problem size Class C, our implementation achieved a speedup of 41 on a 64-node cluster, compared to 13 for the MPl-based NAS version. The results demonstrate that the combination of the two-dimensional blocking method and the EARTH architectural runtime support helps to compensate for the low communications bandwidth common to most clusters.","PeriodicalId":123512,"journal":{"name":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","volume":"78 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2004 IEEE International Conference on Cluster Computing (IEEE Cat. No.04EX935)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLUSTR.2004.1392645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
Conjugate gradient (CG) is one of the most popular iterative approaches to solving large sparse linear systems of equations. This work reports a parallel implementation of CG on clusters with EARTH multithreaded runtime support. Interphase and intraphase communication costs are balanced using a two-dimensional blocking method, minimizing overall communication costs. EARTH'S adaptive, event-driven multithreaded execution model gives additional opportunities to overlap communication and computation to achieve even better scalability. Experiments on a large Beowulf cluster with gigabit Ethernet show notable improvements over other parallel CG implementations. For example, with the NAS CG benchmark problem size Class C, our implementation achieved a speedup of 41 on a 64-node cluster, compared to 13 for the MPl-based NAS version. The results demonstrate that the combination of the two-dimensional blocking method and the EARTH architectural runtime support helps to compensate for the low communications bandwidth common to most clusters.