Predicting Pure Amnestic Mild Cognitive Impairment Conversion to Alzheimer's Disease Using Joint Modeling of Imaging and Clinical Data

V. Kebets, J. Richiardi, Mitsouko van Assche, Rachel Goldstein, M. Meulen, P. Vuilleumier, D. Ville, F. Assal
{"title":"Predicting Pure Amnestic Mild Cognitive Impairment Conversion to Alzheimer's Disease Using Joint Modeling of Imaging and Clinical Data","authors":"V. Kebets, J. Richiardi, Mitsouko van Assche, Rachel Goldstein, M. Meulen, P. Vuilleumier, D. Ville, F. Assal","doi":"10.1109/PRNI.2015.23","DOIUrl":null,"url":null,"abstract":"Predicting the conversion of amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) is a challenging problem for which machine learning could be of great use. In this work, we aim at assessing the independent and joint value of imaging (structural MRI, resting-state functional MRI (rsfMRI)) and clinical data in classifying stable versus progressive aMCI. Surprisingly, we found no previous studies using rsfMRI to predict conversion of MCI to AD. We use singular value decomposition as a feature extractor before combining modalities. We reach accuracies of up to 82% using rsfMRI, 86% using sMRI and rsfMRI combined, and 77% using a combination of all modalities.","PeriodicalId":380902,"journal":{"name":"2015 International Workshop on Pattern Recognition in NeuroImaging","volume":"415 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Workshop on Pattern Recognition in NeuroImaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PRNI.2015.23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Predicting the conversion of amnestic mild cognitive impairment (aMCI) to Alzheimer's disease (AD) is a challenging problem for which machine learning could be of great use. In this work, we aim at assessing the independent and joint value of imaging (structural MRI, resting-state functional MRI (rsfMRI)) and clinical data in classifying stable versus progressive aMCI. Surprisingly, we found no previous studies using rsfMRI to predict conversion of MCI to AD. We use singular value decomposition as a feature extractor before combining modalities. We reach accuracies of up to 82% using rsfMRI, 86% using sMRI and rsfMRI combined, and 77% using a combination of all modalities.
利用影像学和临床数据联合建模预测纯粹的遗忘性轻度认知障碍转化为阿尔茨海默病
预测遗忘性轻度认知障碍(aMCI)向阿尔茨海默病(AD)的转变是一个具有挑战性的问题,机器学习可以在这个问题上发挥重要作用。在这项工作中,我们的目的是评估成像(结构MRI,静息状态功能MRI (rsfMRI))和临床数据在分类稳定型和进行性aMCI中的独立和联合价值。令人惊讶的是,我们没有发现先前使用rsfMRI预测MCI转化为AD的研究。在组合模态之前,我们使用奇异值分解作为特征提取器。我们使用rsfMRI的准确率高达82%,使用sMRI和rsfMRI联合的准确率为86%,使用所有模式的组合准确率为77%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信