The Hilbert Function, Algebraic Extractors, and Recursive Fourier Sampling

Zachary Remscrim
{"title":"The Hilbert Function, Algebraic Extractors, and Recursive Fourier Sampling","authors":"Zachary Remscrim","doi":"10.1109/FOCS.2016.29","DOIUrl":null,"url":null,"abstract":"In this paper, we apply tools from algebraic geometry to prove new results concerning extractors for algebraic sets, the recursive Fourier sampling problem, and VC dimension. We present a new construction of an extractor which works for algebraic sets defined by polynomials over GF(2) of substantially higher degree than the current state-of-the-art construction. We also exactly determine the GF(2)-polynomial degree of the recursive Fourier sampling problem and use this to provide new partial results towards a circuit lower bound for this problem. Finally, we answer a question concerning VC dimension, interpolation degree and the Hilbert function.","PeriodicalId":414001,"journal":{"name":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"113 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE 57th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2016.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

In this paper, we apply tools from algebraic geometry to prove new results concerning extractors for algebraic sets, the recursive Fourier sampling problem, and VC dimension. We present a new construction of an extractor which works for algebraic sets defined by polynomials over GF(2) of substantially higher degree than the current state-of-the-art construction. We also exactly determine the GF(2)-polynomial degree of the recursive Fourier sampling problem and use this to provide new partial results towards a circuit lower bound for this problem. Finally, we answer a question concerning VC dimension, interpolation degree and the Hilbert function.
希尔伯特函数,代数提取器和递归傅立叶采样
在本文中,我们应用代数几何的工具来证明关于代数集的提取器、递归傅立叶采样问题和VC维的新结果。我们提出了一种新的提取器结构,它适用于由GF(2)上的多项式定义的代数集,其程度比目前最先进的结构高得多。我们还精确地确定了递归傅里叶采样问题的GF(2)-多项式次,并利用它为该问题的电路下界提供了新的部分结果。最后,我们回答了一个关于VC维、插值度和Hilbert函数的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信