{"title":"Practical Bulk Denoising Of Large Binary Images","authors":"Ignacio Ramírez Paulino","doi":"10.1109/ICIP46576.2022.9897678","DOIUrl":null,"url":null,"abstract":"This paper explores the problem of removing real, non-simulated noise from a large body of large binary images. Three denoising methods are evaluated for their efficacy and speed: the well known DUDE, a novel variant of it which we call the Quorum Denoiser, and an adaptation of the Non-Local Means (NLM) method for binary images, B-NLM which, to our knowledge, is faster than other known variants. The methods are compared and tested both on simulated noise (as a benchmark) and on the real life images. All three methods produce good results on real noise. However, despite being optimized, the B-NLM is significantly slower than the other two, whose speeds are comparable to a plain median filter. Overall, the Quorum denoiser appears to be the best option, both in quality (real and simulated) and speed.","PeriodicalId":387035,"journal":{"name":"2022 IEEE International Conference on Image Processing (ICIP)","volume":"212 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP46576.2022.9897678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the problem of removing real, non-simulated noise from a large body of large binary images. Three denoising methods are evaluated for their efficacy and speed: the well known DUDE, a novel variant of it which we call the Quorum Denoiser, and an adaptation of the Non-Local Means (NLM) method for binary images, B-NLM which, to our knowledge, is faster than other known variants. The methods are compared and tested both on simulated noise (as a benchmark) and on the real life images. All three methods produce good results on real noise. However, despite being optimized, the B-NLM is significantly slower than the other two, whose speeds are comparable to a plain median filter. Overall, the Quorum denoiser appears to be the best option, both in quality (real and simulated) and speed.