Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering Algorithm Using Particle Swarm Optimization for Medical Image Segmentation

Ibtissem Cherfa, Anissa Zergaïnoh-Mokraoui, A. Mekhmoukh, K. Mokrani
{"title":"Adaptively Regularized Kernel-Based Fuzzy C-Means Clustering Algorithm Using Particle Swarm Optimization for Medical Image Segmentation","authors":"Ibtissem Cherfa, Anissa Zergaïnoh-Mokraoui, A. Mekhmoukh, K. Mokrani","doi":"10.23919/spa50552.2020.9241242","DOIUrl":null,"url":null,"abstract":"This paper is concerned with Magnetic Resonance (MR) brain image segmentation using Adaptively Regularized Kernel-Based Fuzzy C-Means (ARKFCM) clustering algorithm. However this algorithm is sensitive to the random initialization of the clusters’ centers and moreover its optimal solution can be trapped into a local rather than a global solution. To overcome these drawbacks, this paper proposes the Particle Swarm Optimization (PSO) strategy to compute the clusters’ centroids instead of using directly the derived analytic expression of the centroids given by the ARKFCM algorithm. Experimental results, carried out on MR brain images from the BrainWeb database, show that the revisited ARKFCM algorithm improves the performance of its original version.","PeriodicalId":157578,"journal":{"name":"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/spa50552.2020.9241242","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

This paper is concerned with Magnetic Resonance (MR) brain image segmentation using Adaptively Regularized Kernel-Based Fuzzy C-Means (ARKFCM) clustering algorithm. However this algorithm is sensitive to the random initialization of the clusters’ centers and moreover its optimal solution can be trapped into a local rather than a global solution. To overcome these drawbacks, this paper proposes the Particle Swarm Optimization (PSO) strategy to compute the clusters’ centroids instead of using directly the derived analytic expression of the centroids given by the ARKFCM algorithm. Experimental results, carried out on MR brain images from the BrainWeb database, show that the revisited ARKFCM algorithm improves the performance of its original version.
基于粒子群优化的自适应正则核模糊c均值聚类算法用于医学图像分割
本文研究了基于自适应正则化核的模糊c均值聚类算法在磁共振脑图像分割中的应用。然而,该算法对聚类中心的随机初始化很敏感,而且其最优解可能陷入局部解而不是全局解。为了克服这些缺点,本文提出了粒子群优化(PSO)策略来计算聚类的质心,而不是直接使用ARKFCM算法给出的导出的质心解析表达式。在BrainWeb数据库的MR脑图像上进行的实验结果表明,改进后的ARKFCM算法的性能比原始版本有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信