Toward a Methodology for Training with Synthetic Data on the Example of Pedestrian Detection in a Frame-by-Frame Semantic Segmentation Task

Atanas Poibrenski, J. Sprenger, Christian Müller
{"title":"Toward a Methodology for Training with Synthetic Data on the Example of Pedestrian Detection in a Frame-by-Frame Semantic Segmentation Task","authors":"Atanas Poibrenski, J. Sprenger, Christian Müller","doi":"10.1145/3194085.3194093","DOIUrl":null,"url":null,"abstract":"In order to make highly/fully automated driving safe, synthetic training and validation data will be required, because critical road situations are too divers and too rare. A few studies on using synthetic data have been published, reporting a general increase in accuracy. In this paper, we propose a novel method to gain more in-depth insights in the quality, performance, and influence of synthetic data during training phase in a bounded setting. We demonstrate this method for the example of pedestrian detection in a frame-by-frame semantic segmentation class.","PeriodicalId":360022,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194085.3194093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In order to make highly/fully automated driving safe, synthetic training and validation data will be required, because critical road situations are too divers and too rare. A few studies on using synthetic data have been published, reporting a general increase in accuracy. In this paper, we propose a novel method to gain more in-depth insights in the quality, performance, and influence of synthetic data during training phase in a bounded setting. We demonstrate this method for the example of pedestrian detection in a frame-by-frame semantic segmentation class.
以逐帧语义分割任务中行人检测为例的综合数据训练方法研究
为了确保高度/全自动驾驶的安全性,需要综合训练和验证数据,因为关键的道路情况太过多样化和罕见。已经发表了一些关于使用合成数据的研究报告,报告准确性普遍提高。在本文中,我们提出了一种新的方法来更深入地了解有界设置下训练阶段合成数据的质量、性能和影响。我们在逐帧语义分割类中演示了该方法的行人检测示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信