{"title":"Toward a Methodology for Training with Synthetic Data on the Example of Pedestrian Detection in a Frame-by-Frame Semantic Segmentation Task","authors":"Atanas Poibrenski, J. Sprenger, Christian Müller","doi":"10.1145/3194085.3194093","DOIUrl":null,"url":null,"abstract":"In order to make highly/fully automated driving safe, synthetic training and validation data will be required, because critical road situations are too divers and too rare. A few studies on using synthetic data have been published, reporting a general increase in accuracy. In this paper, we propose a novel method to gain more in-depth insights in the quality, performance, and influence of synthetic data during training phase in a bounded setting. We demonstrate this method for the example of pedestrian detection in a frame-by-frame semantic segmentation class.","PeriodicalId":360022,"journal":{"name":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/ACM 1st International Workshop on Software Engineering for AI in Autonomous Systems (SEFAIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3194085.3194093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In order to make highly/fully automated driving safe, synthetic training and validation data will be required, because critical road situations are too divers and too rare. A few studies on using synthetic data have been published, reporting a general increase in accuracy. In this paper, we propose a novel method to gain more in-depth insights in the quality, performance, and influence of synthetic data during training phase in a bounded setting. We demonstrate this method for the example of pedestrian detection in a frame-by-frame semantic segmentation class.