Group permutable constant weight codes

O. Moreno, J. Ortiz-Ubarri
{"title":"Group permutable constant weight codes","authors":"O. Moreno, J. Ortiz-Ubarri","doi":"10.1109/CIG.2010.5592644","DOIUrl":null,"url":null,"abstract":"Improvements to the Johnson Bound for Optical Orthogonal Codes have been used to prove the optimality of double-periodic arrays with row and column length relatively prime. In our work we produce families of double-periodic arrays where the row and column length are not relatively prime. In this work we introduce the concept of group permutable constant weight codes and non-binary group permutable constant weight codes. We present improvements to the Johnson Bound to bound the cardinality of the families of double-periodic arrays whose row and column length are not relatively prime. We present some families of group permutable constant weight codes and prove the optimality of these families.","PeriodicalId":354925,"journal":{"name":"2010 IEEE Information Theory Workshop","volume":"45 33","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE Information Theory Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2010.5592644","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Improvements to the Johnson Bound for Optical Orthogonal Codes have been used to prove the optimality of double-periodic arrays with row and column length relatively prime. In our work we produce families of double-periodic arrays where the row and column length are not relatively prime. In this work we introduce the concept of group permutable constant weight codes and non-binary group permutable constant weight codes. We present improvements to the Johnson Bound to bound the cardinality of the families of double-periodic arrays whose row and column length are not relatively prime. We present some families of group permutable constant weight codes and prove the optimality of these families.
分组可变常权码
利用对光正交码Johnson界的改进,证明了行、列长度相对素数的双周期阵列的最优性。在我们的工作中,我们得到了行和列长度不是相对素数的双周期数组族。本文引入了群可变常数权码和非二进制群可变常数权码的概念。给出了对Johnson界的改进,用于约束行、列长度非相对素数的双周期数组族的基数。给出了群置换常权码的一些族,并证明了这些族的最优性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信